Exact estimation for Markov chain equilibrium expectations

We introduce a new class of Monte Carlo methods, which we call exact estimation algorithms. Such algorithms provide unbiased estimators for equilibrium expectations associated with real-valued functionals defined on a Markov chain. We provide easily implemented algorithms for the class of positive H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2014-12, Vol.51 (A), p.377-389
Hauptverfasser: Glynn, Peter W., Rhee, Chang-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new class of Monte Carlo methods, which we call exact estimation algorithms. Such algorithms provide unbiased estimators for equilibrium expectations associated with real-valued functionals defined on a Markov chain. We provide easily implemented algorithms for the class of positive Harris recurrent Markov chains, and for chains that are contracting on average. We further argue that exact estimation in the Markov chain setting provides a significant theoretical relaxation relative to exact simulation methods.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1417528487