Tail Dependence for Heavy-Tailed Scale Mixtures of Multivariate Distributions
The tail dependence of multivariate distributions is frequently studied via the tool of copulas. In this paper we develop a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas ar...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2009-12, Vol.46 (4), p.925-937 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tail dependence of multivariate distributions is frequently studied via the tool of copulas. In this paper we develop a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulae for tail dependence parameters are derived, and a sufficient condition under which the parameters are monotone with respect to the heavy tail index is obtained. The multivariate elliptical distributions are discussed to illustrate the results. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1239/jap/1261670680 |