Tail Dependence for Heavy-Tailed Scale Mixtures of Multivariate Distributions

The tail dependence of multivariate distributions is frequently studied via the tool of copulas. In this paper we develop a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2009-12, Vol.46 (4), p.925-937
Hauptverfasser: Li, Haijun, Sun, Yannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tail dependence of multivariate distributions is frequently studied via the tool of copulas. In this paper we develop a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulae for tail dependence parameters are derived, and a sufficient condition under which the parameters are monotone with respect to the heavy tail index is obtained. The multivariate elliptical distributions are discussed to illustrate the results.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1261670680