Limit theorems for continuous-time random walks with infinite mean waiting times

A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2004-09, Vol.41 (3), p.623-638
Hauptverfasser: Meerschaert, Mark M., Scheffler, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1091543414