A note on losses in M/GI/1/n queues

Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1999-12, Vol.36 (4), p.1240-1243
1. Verfasser: Righter, Rhonda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 4
container_start_page 1240
container_title Journal of applied probability
container_volume 36
creator Righter, Rhonda
description Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.
doi_str_mv 10.1239/jap/1032374770
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1032374770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1032374770</cupid><jstor_id>3215593</jstor_id><sourcerecordid>3215593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b3336771fb997fd0ba7b8120065838bd10b471bd2c7c1ab9a750faf9a9dc90453</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMLKxBAJ1pC7OI7jjaqCUqmIhc6R7TgoURoXOxn49xg1agfEcifd-9I7Qm4RHjGlImnlPkGgKeUZ53BGZphxFufA03MyA0gxFmFekivvWwDMmOAzcr-IejuYyPZRZ703Pmr66C1ZrRNM-uhrNKPx1-Silp03N9Oek-3L88fyNd68r9bLxSbWtGBDrCilOedYKyF4XYGSXBWYAuSsoIWqEFTGUVWp5hqlEpIzqGUtpKi0gIzROXk6-O6dbY0ezKi7pir3rtlJ911a2ZTL7Wa6TiuULk-lg8XjwUK70MaZ-qhGKH-_9FfwMGVKr2VXO9nrxp9UgYgsD7S7A631g3VHmKbImKABhilW7pRrqk9TtnZ0ffjWf8E_9vN92Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A note on losses in M/GI/1/n queues</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Righter, Rhonda</creator><creatorcontrib>Righter, Rhonda</creatorcontrib><description>Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1032374770</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60K25 ; Applied sciences ; Customers ; Exact sciences and technology ; Loss systems ; M/GI/1/n queues ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Probability theory and stochastic processes ; Queuing theory. Traffic theory ; Sciences and techniques of general use ; Short Communications ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; stochastic coupling</subject><ispartof>Journal of applied probability, 1999-12, Vol.36 (4), p.1240-1243</ispartof><rights>Copyright © Applied Probability Trust 1999</rights><rights>Copyright 1999 Applied Probability Trust</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b3336771fb997fd0ba7b8120065838bd10b471bd2c7c1ab9a750faf9a9dc90453</citedby><cites>FETCH-LOGICAL-c385t-b3336771fb997fd0ba7b8120065838bd10b471bd2c7c1ab9a750faf9a9dc90453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3215593$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3215593$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1323156$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Righter, Rhonda</creatorcontrib><title>A note on losses in M/GI/1/n queues</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.</description><subject>60K25</subject><subject>Applied sciences</subject><subject>Customers</subject><subject>Exact sciences and technology</subject><subject>Loss systems</subject><subject>M/GI/1/n queues</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Queuing theory. Traffic theory</subject><subject>Sciences and techniques of general use</subject><subject>Short Communications</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>stochastic coupling</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMLKxBAJ1pC7OI7jjaqCUqmIhc6R7TgoURoXOxn49xg1agfEcifd-9I7Qm4RHjGlImnlPkGgKeUZ53BGZphxFufA03MyA0gxFmFekivvWwDMmOAzcr-IejuYyPZRZ703Pmr66C1ZrRNM-uhrNKPx1-Silp03N9Oek-3L88fyNd68r9bLxSbWtGBDrCilOedYKyF4XYGSXBWYAuSsoIWqEFTGUVWp5hqlEpIzqGUtpKi0gIzROXk6-O6dbY0ezKi7pir3rtlJ911a2ZTL7Wa6TiuULk-lg8XjwUK70MaZ-qhGKH-_9FfwMGVKr2VXO9nrxp9UgYgsD7S7A631g3VHmKbImKABhilW7pRrqk9TtnZ0ffjWf8E_9vN92Q</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Righter, Rhonda</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991201</creationdate><title>A note on losses in M/GI/1/n queues</title><author>Righter, Rhonda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b3336771fb997fd0ba7b8120065838bd10b471bd2c7c1ab9a750faf9a9dc90453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>60K25</topic><topic>Applied sciences</topic><topic>Customers</topic><topic>Exact sciences and technology</topic><topic>Loss systems</topic><topic>M/GI/1/n queues</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Queuing theory. Traffic theory</topic><topic>Sciences and techniques of general use</topic><topic>Short Communications</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>stochastic coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Righter, Rhonda</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Righter, Rhonda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on losses in M/GI/1/n queues</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>36</volume><issue>4</issue><spage>1240</spage><epage>1243</epage><pages>1240-1243</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1032374770</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1999-12, Vol.36 (4), p.1240-1243
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1032374770
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 60K25
Applied sciences
Customers
Exact sciences and technology
Loss systems
M/GI/1/n queues
Mathematics
Operational research and scientific management
Operational research. Management science
Probability and statistics
Probability theory and stochastic processes
Queuing theory. Traffic theory
Sciences and techniques of general use
Short Communications
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
stochastic coupling
title A note on losses in M/GI/1/n queues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20losses%20in%20M/GI/1/n%20queues&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Righter,%20Rhonda&rft.date=1999-12-01&rft.volume=36&rft.issue=4&rft.spage=1240&rft.epage=1243&rft.pages=1240-1243&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1032374770&rft_dat=%3Cjstor_proje%3E3215593%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1239_jap_1032374770&rft_jstor_id=3215593&rfr_iscdi=true