A note on losses in M/GI/1/n queues

Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1999-12, Vol.36 (4), p.1240-1243
1. Verfasser: Righter, Rhonda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1032374770