A note on losses in M/GI/1/n queues
Let L n be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L n and L n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL n = 1 for all n. We also show that L n i...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1999-12, Vol.36 (4), p.1240-1243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let L
n
be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between L
n
and L
n+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, EL
n
= 1 for all n. We also show that L
n
is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1239/jap/1032374770 |