Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation

In first-passage percolation (FPP) models, the passage time T ℓ from the origin to the point ℓe ℓ satisfies f(ℓ) := ET ℓ = μℓ + o(ℓ ½+ε), where μ ∊ (0,∞) denotes the time constant. Yet, for lattice FPP, it is not known rigorously that f(ℓ) is eventually monotonically increasing. Here, for the Poisso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2001-12, Vol.38 (4), p.815-827
1. Verfasser: Howard, C. Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In first-passage percolation (FPP) models, the passage time T ℓ from the origin to the point ℓe ℓ satisfies f(ℓ) := ET ℓ = μℓ + o(ℓ ½+ε), where μ ∊ (0,∞) denotes the time constant. Yet, for lattice FPP, it is not known rigorously that f(ℓ) is eventually monotonically increasing. Here, for the Poisson-based Euclidean FPP of Howard and Newman (Prob. Theory Relat. Fields 108 (1997), 153–170), we prove an explicit formula for f′(ℓ). In all dimensions, for certain values of the model's only parameter we have f′(ℓ) ≥ C > 0 for large ℓ.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1011994174