Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
In first-passage percolation (FPP) models, the passage time T ℓ from the origin to the point ℓe ℓ satisfies f(ℓ) := ET ℓ = μℓ + o(ℓ ½+ε), where μ ∊ (0,∞) denotes the time constant. Yet, for lattice FPP, it is not known rigorously that f(ℓ) is eventually monotonically increasing. Here, for the Poisso...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2001-12, Vol.38 (4), p.815-827 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In first-passage percolation (FPP) models, the passage time T
ℓ
from the origin to the point ℓe
ℓ satisfies f(ℓ) := ET
ℓ
= μℓ + o(ℓ
½+ε), where μ ∊ (0,∞) denotes the time constant. Yet, for lattice FPP, it is not known rigorously that f(ℓ) is eventually monotonically increasing. Here, for the Poisson-based Euclidean FPP of Howard and Newman (Prob. Theory Relat. Fields
108 (1997), 153–170), we prove an explicit formula for f′(ℓ). In all dimensions, for certain values of the model's only parameter we have f′(ℓ) ≥ C > 0 for large ℓ. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1239/jap/1011994174 |