Existence of Solutions for the Evolution p(x)-Laplacian Equation Not in Divergence Form
The existence of weak solutions is studied to the initial Dirichlet problemof the equation ut=udiv(|∇u|p(x)−2∇u), with inf p(x)>2. We adopt the method of parabolic regularization. After establishing some necessary uniform estimates on the approximate solutions, we prove the existence of weak solu...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.1561-1581-690 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of weak solutions is studied to the initial Dirichlet problemof the equation ut=udiv(|∇u|p(x)−2∇u), with inf p(x)>2. We adopt the method of parabolic regularization. After establishing some necessary uniform estimates on the approximate solutions, we prove the existence of weak solutions. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/835495 |