Evaluations of hypergeometric functions over finite fields
We prove two general formulas for a two-parameter family of hypergeometric \3F2(z) functions over a finite field \F_q, where q is a power of an odd prime. Each formula evaluates a \3F2 in terms of a \2F1 over \F_{q^2}. As applications, we evaluate infinite one-parameter families of \3F2(\frac{1}{4})...
Gespeichert in:
Veröffentlicht in: | Hiroshima mathematical journal 2009-07, Vol.39 (2), p.217-235 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove two general formulas for a two-parameter family of hypergeometric
\3F2(z) functions over a finite field \F_q, where q is a power of an odd
prime. Each formula evaluates a \3F2 in terms of a \2F1 over \F_{q^2}. As
applications, we evaluate infinite one-parameter families of \3F2(\frac{1}{4})
and \3F2(-1), thereby extending results of J. Greene--D. Stanton and K. Ono,
who gave evaluations in special cases. |
---|---|
ISSN: | 0018-2079 |
DOI: | 10.32917/hmj/1249046338 |