Evaluations of hypergeometric functions over finite fields

We prove two general formulas for a two-parameter family of hypergeometric \3F2(z) functions over a finite field \F_q, where q is a power of an odd prime. Each formula evaluates a \3F2 in terms of a \2F1 over \F_{q^2}. As applications, we evaluate infinite one-parameter families of \3F2(\frac{1}{4})...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hiroshima mathematical journal 2009-07, Vol.39 (2), p.217-235
Hauptverfasser: Evans, Ron, Greene, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove two general formulas for a two-parameter family of hypergeometric \3F2(z) functions over a finite field \F_q, where q is a power of an odd prime. Each formula evaluates a \3F2 in terms of a \2F1 over \F_{q^2}. As applications, we evaluate infinite one-parameter families of \3F2(\frac{1}{4}) and \3F2(-1), thereby extending results of J. Greene--D. Stanton and K. Ono, who gave evaluations in special cases.
ISSN:0018-2079
DOI:10.32917/hmj/1249046338