Cyclic structures in algebraic (co)homology theories

This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Homology, homotopy, and applications homotopy, and applications, 2011, Vol.13 (1), p.297-318
Hauptverfasser: Kowalzig, Niels, Krähmer, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 297
container_title Homology, homotopy, and applications
container_volume 13
creator Kowalzig, Niels
Krähmer, Ulrich
description This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules
doi_str_mv 10.4310/HHA.2011.v13.n1.a12
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hha_1311953355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_HHA_2011_v13_n1_a12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ed12328ae766c4a7bf5b4ea99138e11d794936bb108644b43824b68b5d492e1d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKe_wJc-6kNrbm7Spm-Ook4o-OKeQ5Kma0e3jKQT9u_t2NjTuRw4H5ePkGegGUegb8vlImMUIPsDzHaQaWA3ZAYCWUqphNvrXeA9eYhxQylwiTAjvDraobdJHMPBjofgYtLvEj2snQl66l-sf-381g9-fUzGzvnQu_hI7lo9RPd0yTlZfX78Vsu0_vn6rhZ1alHAmLoGGDKpXZHnluvCtMJwp8sSUDqApih5ibkxQGXOueEoGTe5NKLhJXPQ4Jy8n7n74DfOju4w_dqofei3OhyV172qVvWlvUTXaQUIUApEISYEnhE2-BiDa69roOrkTk3u1MmdmtypHajJHf4DJlNjEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cyclic structures in algebraic (co)homology theories</title><source>International Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kowalzig, Niels ; Krähmer, Ulrich</creator><creatorcontrib>Kowalzig, Niels ; Krähmer, Ulrich</creatorcontrib><description>This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules</description><identifier>ISSN: 1532-0073</identifier><identifier>EISSN: 1532-0081</identifier><identifier>DOI: 10.4310/HHA.2011.v13.n1.a12</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>16E40 ; 16T05 ; 16T15 ; 19D55 ; 58B34 ; Cyclic homology ; Hopf algebroid ; Lie-Rinehart algebra ; twisted cyclic homology</subject><ispartof>Homology, homotopy, and applications, 2011, Vol.13 (1), p.297-318</ispartof><rights>Copyright 2011 International Press of Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ed12328ae766c4a7bf5b4ea99138e11d794936bb108644b43824b68b5d492e1d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kowalzig, Niels</creatorcontrib><creatorcontrib>Krähmer, Ulrich</creatorcontrib><title>Cyclic structures in algebraic (co)homology theories</title><title>Homology, homotopy, and applications</title><description>This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules</description><subject>16E40</subject><subject>16T05</subject><subject>16T15</subject><subject>19D55</subject><subject>58B34</subject><subject>Cyclic homology</subject><subject>Hopf algebroid</subject><subject>Lie-Rinehart algebra</subject><subject>twisted cyclic homology</subject><issn>1532-0073</issn><issn>1532-0081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKe_wJc-6kNrbm7Spm-Ook4o-OKeQ5Kma0e3jKQT9u_t2NjTuRw4H5ePkGegGUegb8vlImMUIPsDzHaQaWA3ZAYCWUqphNvrXeA9eYhxQylwiTAjvDraobdJHMPBjofgYtLvEj2snQl66l-sf-381g9-fUzGzvnQu_hI7lo9RPd0yTlZfX78Vsu0_vn6rhZ1alHAmLoGGDKpXZHnluvCtMJwp8sSUDqApih5ibkxQGXOueEoGTe5NKLhJXPQ4Jy8n7n74DfOju4w_dqofei3OhyV172qVvWlvUTXaQUIUApEISYEnhE2-BiDa69roOrkTk3u1MmdmtypHajJHf4DJlNjEg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kowalzig, Niels</creator><creator>Krähmer, Ulrich</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2011</creationdate><title>Cyclic structures in algebraic (co)homology theories</title><author>Kowalzig, Niels ; Krähmer, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ed12328ae766c4a7bf5b4ea99138e11d794936bb108644b43824b68b5d492e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>16E40</topic><topic>16T05</topic><topic>16T15</topic><topic>19D55</topic><topic>58B34</topic><topic>Cyclic homology</topic><topic>Hopf algebroid</topic><topic>Lie-Rinehart algebra</topic><topic>twisted cyclic homology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalzig, Niels</creatorcontrib><creatorcontrib>Krähmer, Ulrich</creatorcontrib><collection>CrossRef</collection><jtitle>Homology, homotopy, and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalzig, Niels</au><au>Krähmer, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic structures in algebraic (co)homology theories</atitle><jtitle>Homology, homotopy, and applications</jtitle><date>2011</date><risdate>2011</risdate><volume>13</volume><issue>1</issue><spage>297</spage><epage>318</epage><pages>297-318</pages><issn>1532-0073</issn><eissn>1532-0081</eissn><abstract>This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules</abstract><pub>International Press of Boston</pub><doi>10.4310/HHA.2011.v13.n1.a12</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0073
ispartof Homology, homotopy, and applications, 2011, Vol.13 (1), p.297-318
issn 1532-0073
1532-0081
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_hha_1311953355
source International Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 16E40
16T05
16T15
19D55
58B34
Cyclic homology
Hopf algebroid
Lie-Rinehart algebra
twisted cyclic homology
title Cyclic structures in algebraic (co)homology theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20structures%20in%20algebraic%20(co)homology%20theories&rft.jtitle=Homology,%20homotopy,%20and%20applications&rft.au=Kowalzig,%20Niels&rft.date=2011&rft.volume=13&rft.issue=1&rft.spage=297&rft.epage=318&rft.pages=297-318&rft.issn=1532-0073&rft.eissn=1532-0081&rft_id=info:doi/10.4310/HHA.2011.v13.n1.a12&rft_dat=%3Ccrossref_proje%3E10_4310_HHA_2011_v13_n1_a12%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true