Cyclic structures in algebraic (co)homology theories

This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Homology, homotopy, and applications homotopy, and applications, 2011, Vol.13 (1), p.297-318
Hauptverfasser: Kowalzig, Niels, Krähmer, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules
ISSN:1532-0073
1532-0081
DOI:10.4310/HHA.2011.v13.n1.a12