Cyclic structures in algebraic (co)homology theories
This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special c...
Gespeichert in:
Veröffentlicht in: | Homology, homotopy, and applications homotopy, and applications, 2011, Vol.13 (1), p.297-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This note discusses the cyclic cohomology of a left Hopf algebroid (\times_A-Hopf algebra) with coefficients in a right module-left
comodule, defined using a straightforward generalisation of the
original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A
generalisation of cyclic duality that makes sense for arbitrary
para-cyclic objects yields a dual homology theory. The twisted
cyclic homology of an associative algebra provides an example
of this dual theory that uses coefficients that are not necessarily
stable anti Yetter-Drinfel’d modules |
---|---|
ISSN: | 1532-0073 1532-0081 |
DOI: | 10.4310/HHA.2011.v13.n1.a12 |