Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities

Let A be a locally m-convex Fréchet algebra. We give a necessary and sufficient condition for a cyclic Fréchet A-module X=A+/I to be strictly flat, generalizing thereby a criterion of Helemskii and Sheinberg. To this end, we introduce a notion of "locally bounded approximate identity" (a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Homology, homotopy, and applications homotopy, and applications, 2009, Vol.11 (1), p.81-114
1. Verfasser: Pirkovskii, A.Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a locally m-convex Fréchet algebra. We give a necessary and sufficient condition for a cyclic Fréchet A-module X=A+/I to be strictly flat, generalizing thereby a criterion of Helemskii and Sheinberg. To this end, we introduce a notion of "locally bounded approximate identity" (a locally b.a.i. for short), and we show that X is strictly flat if and only if the ideal I has a right locally b.a.i. Next we apply this result to amenable algebras and show that a locally m-convex Fréchet algebra A is amenable if and only if A is isomorphic to a reduced inverse limit of amenable Banach algebras. We also extend a number of characterizations of amenability obtained by Johnson and by Helemskii and Sheinberg to the setting of locally m-convex Fréchet algebras. As a corollary, we show that Connes and Haagerup's theorem on amenable C*-algebras and Sheinberg's theorem on amenable uniform algebras hold in the Fréchet algebra case. We also show that a quasinormable locally m-convex Fréchet algebra has a locally b.a.i. if and only if it has a b.a.i. On the other hand, we give an example of a commutative, locally m-convex Fréchet-Montel algebra which has a locally b.a.i., but does not have a b.a.i.
ISSN:1532-0073
1532-0081
DOI:10.4310/HHA.2009.v11.n1.a5