Classification of di-embeddings of the $n$-cube into $\mathbb{R}^n
A di-embedding of the n-cube I^n into \mathbb{r}^n is a map I ^n\to \mathbb{R}^n which is a dihomeomorphism onto its image.We show that such a map is, up to a permutation of coordinates, an n-fold product of 1-dimensional orientation preserving embeddings I^1 \to \mathbb{R}.
Gespeichert in:
Veröffentlicht in: | Homology, homotopy, and applications homotopy, and applications, 2007, Vol.9 (1), p.213-220 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A di-embedding of the n-cube I^n into \mathbb{r}^n is a map I ^n\to
\mathbb{R}^n which is a dihomeomorphism onto its image.We show that such a map
is, up to a permutation of coordinates, an n-fold product of 1-dimensional
orientation preserving embeddings I^1 \to \mathbb{R}. |
---|---|
ISSN: | 1532-0073 1532-0081 |
DOI: | 10.4310/HHA.2007.v9.n1.a9 |