Small height and infinite nonabelian extensions

Let E be an elliptic curve defined over \mathbf {Q} without complex multiplication. The field F generated over \mathbf {Q} by all torsion points of E is an infinite, nonabelian Galois extension of the rationals which has unbounded, wild ramification above all primes. We prove that the absolute logar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2013-08, Vol.162 (11), p.2027-2076
1. Verfasser: Habegger, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be an elliptic curve defined over \mathbf {Q} without complex multiplication. The field F generated over \mathbf {Q} by all torsion points of E is an infinite, nonabelian Galois extension of the rationals which has unbounded, wild ramification above all primes. We prove that the absolute logarithmic Weil height of an element of F is either zero or bounded from below by a positive constant depending only on E . We also show that the Néron–Tate height has a similar gap on E(F) and use this to determine the structure of the group E(F) .
ISSN:0012-7094
1547-7398
DOI:10.1215/00127094-2331342