Small height and infinite nonabelian extensions
Let E be an elliptic curve defined over \mathbf {Q} without complex multiplication. The field F generated over \mathbf {Q} by all torsion points of E is an infinite, nonabelian Galois extension of the rationals which has unbounded, wild ramification above all primes. We prove that the absolute logar...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2013-08, Vol.162 (11), p.2027-2076 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let E be an elliptic curve defined over \mathbf {Q} without complex multiplication. The field F generated over \mathbf {Q} by all torsion points of E is an infinite, nonabelian Galois extension of the rationals which has unbounded, wild ramification above all primes. We prove that the absolute logarithmic Weil height of an element of F is either zero or bounded from below by a positive constant depending only on E . We also show that the Néron–Tate height has a similar gap on E(F) and use this to determine the structure of the group E(F) . |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-2331342 |