Flexible varieties and automorphism groups

Given an irreducible affine algebraic variety X of dimension n\ge2 , we let \operatorname {SAut}(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group \operatorname{Aut}(X) generated by all one-parameter unipotent subgroups. We show that if \operatornam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2013-03, Vol.162 (4), p.767-823
Hauptverfasser: Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an irreducible affine algebraic variety X of dimension n\ge2 , we let \operatorname {SAut}(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group \operatorname{Aut}(X) generated by all one-parameter unipotent subgroups. We show that if \operatorname {SAut}(X) is transitive on the smooth locus X_{\mathrm{reg}} , then it is infinitely transitive on X_{\mathrm{reg}} . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x\in X_{\mathrm{reg}} the tangent space T_{x}X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of \operatorname{Aut}(X) . We also provide various modifications and applications.
ISSN:0012-7094
1547-7398
DOI:10.1215/00127094-2080132