Flexible varieties and automorphism groups
Given an irreducible affine algebraic variety X of dimension n\ge2 , we let \operatorname {SAut}(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group \operatorname{Aut}(X) generated by all one-parameter unipotent subgroups. We show that if \operatornam...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2013-03, Vol.162 (4), p.767-823 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an irreducible affine algebraic variety X of dimension n\ge2 , we let \operatorname {SAut}(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group \operatorname{Aut}(X) generated by all one-parameter unipotent subgroups. We show that if \operatorname {SAut}(X) is transitive on the smooth locus X_{\mathrm{reg}} , then it is infinitely transitive on X_{\mathrm{reg}} . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x\in X_{\mathrm{reg}} the tangent space T_{x}X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of \operatorname{Aut}(X) . We also provide various modifications and applications. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-2080132 |