Discrete subgroups acting transitively on vertices of a Bruhat–Tits building

We describe all the discrete subgroups of Ad ( G 0 ) ( F ) ⋊ Aut ( F ) that act transitively on the set of vertices of B = B ( F , G 0 ) , the Bruhat–Tits building of a pair ( F , G 0 ) of a characteristic 0 nonarchimedean local field, and a simply connected, absolutely almost simple F -group if B i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2012-02, Vol.161 (3), p.483-544
Hauptverfasser: Mohammadi, Amir, Salehi Golsefidy, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe all the discrete subgroups of Ad ( G 0 ) ( F ) ⋊ Aut ( F ) that act transitively on the set of vertices of B = B ( F , G 0 ) , the Bruhat–Tits building of a pair ( F , G 0 ) of a characteristic 0 nonarchimedean local field, and a simply connected, absolutely almost simple F -group if B is of dimension at least 4 . In fact, we classify all such maximal subgroups. We show that there are exactly eleven families of such subgroups and explicitly construct them. Moreover, we show that four of these families act simply transitively on the vertices. In particular, we show that there is no such action if either the dimension of the building is larger than 7 , if F is not isomorphic to Q p for some prime p , or if the building is associated to SL n , D 0 , where D 0 is a noncommutative division algebra. Along the way we also give a new proof of the Siegel–Klingen theorem on the rationality of certain Dedekind zeta functions and L -functions.
ISSN:0012-7094
1547-7398
DOI:10.1215/00127094-1507430