Entropy of semiclassical measures in dimension 2

We study the high-energy asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface M of Anosov type. To do this, we look at families of distributions associated to them on the cotangent bundle T * M and we derive entropic properties on their accumulation po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2010-11, Vol.155 (2), p.271-335
1. Verfasser: Riviere, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the high-energy asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface M of Anosov type. To do this, we look at families of distributions associated to them on the cotangent bundle T * M and we derive entropic properties on their accumulation points in the high-energy limit (the so-called semiclassical measures). We show that the Kolmogorov-Sinai entropy of a semiclassical measure μ for the geodesic flow g t is bounded from below by half of the Ruelle upper bound; that is, h KS ( μ , g ) ≥ 1 2 ∫ S * M χ + ( ρ )   d μ ( ρ ) , where χ + ( ρ ) is the upper Lyapunov exponent at point ρ .
ISSN:0012-7094
1547-7398
DOI:10.1215/00127094-2010-056