Entropy of semiclassical measures in dimension 2
We study the high-energy asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface M of Anosov type. To do this, we look at families of distributions associated to them on the cotangent bundle T * M and we derive entropic properties on their accumulation po...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2010-11, Vol.155 (2), p.271-335 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the high-energy asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface M of Anosov type. To do this, we look at families of distributions associated to them on the cotangent bundle T * M and we derive entropic properties on their accumulation points in the high-energy limit (the so-called semiclassical measures). We show that the Kolmogorov-Sinai entropy of a semiclassical measure μ for the geodesic flow g t is bounded from below by half of the Ruelle upper bound; that is, h KS ( μ , g ) ≥ 1 2 ∫ S * M χ + ( ρ ) d μ ( ρ ) , where χ + ( ρ ) is the upper Lyapunov exponent at point ρ . |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-2010-056 |