Lagrangian Floer theory on compact toric manifolds, I
We introduced the notion of weakly unobstructed Lagrangian submanifolds and constructed their potential function ( PO ) purely in terms of A -model data in [FOOO3]. In this article, we carry out explicit calculations involving PO on toric manifolds and study the relationship between this class of La...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2010-01, Vol.151 (1), p.23-175 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduced the notion of weakly unobstructed Lagrangian submanifolds and constructed their potential function ( PO ) purely in terms of A -model data in [FOOO3]. In this article, we carry out explicit calculations involving PO on toric manifolds and study the relationship between this class of Lagrangian submanifolds with the earlier work of Givental [G1], which advocates that the quantum cohomology ring is isomorphic to the Jacobian ring of a certain function, called the Landau-Ginzburg superpotential. Combining this study with the results from [FOOO3], we also apply the study to various examples to illustrate its implications to symplectic topology of Lagrangian fibers of toric manifolds. In particular, we relate it to the Hamiltonian displacement property of Lagrangian fibers and to Entov-Polterovich's symplectic quasi-states |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-2009-062 |