Nonlinear gravitons, null geodesics, and holomorphic disks

We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature ( + + - - ) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S 2 × S 2 , there is an infinite-dimensional moduli space of such conformal structures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2007-02, Vol.136 (2), p.205-273
Hauptverfasser: Lebrun, Claude, Mason, L. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature ( + + - - ) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S 2 × S 2 , there is an infinite-dimensional moduli space of such conformal structures, and each of these has the surprising global property that its null geodesics are all periodic. Each such conformal structure arises from a family of holomorphic disks in C P 3 with boundary on some totally real embedding of R P 3 into C P 3 . Some of these conformal classes are represented by scalar-flat indefinite Kähler metrics, and our methods give particularly sharp results in connection with this special case
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-07-13621-4