Random symmetric matrices are almost surely nonsingular
Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fix...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2006-11, Vol.135 (2), p.395-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 2 |
container_start_page | 395 |
container_title | Duke mathematical journal |
container_volume | 135 |
creator | Costello, Kevin P. Tao, Terence Vu, Van |
description | Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fixed δ > 0 . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices |
doi_str_mv | 10.1215/S0012-7094-06-13527-5 |
format | Article |
fullrecord | <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1161093270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_L4J8509S_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-4c43ff6df931675028e979f22784274c6fb955a818e1199eb39f6020b9a11adc3</originalsourceid><addsrcrecordid>eNo9kNtKAzEURYMoWKufIMwPRHNyz5tS1CoDgrXPIc0kMnUuJZmC_Xs7benT5hz22g8LoXsgD0BBPC4IAYoVMRwTiYEJqrC4QBMQXGHFjL5Ek3PlGt3kvB5PI-kEqS_XVX1b5F3bhiHVvmjdGCEXLoXCNW2fhyJvU2h2Rdd3ue5-to1Lt-gquiaHu1NO0fL15Xs2x-Xn2_vsucSecT1g7jmLUVbRMJBKEKqDUSZSqjSninsZV0YIp0EHAGPCipkoCSUr4wBc5dkUPR13N6lfBz-ErW_qym5S3bq0s72r7WxZnr6nqNq1BZBADKOK7CfEccKnPucU4pkGYkeB9iDQjnYskfYg0Io9h49cnYfwd4Zc-rVSMSWsksKW_EMLYhaWs3-6g3K8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random symmetric matrices are almost surely nonsingular</title><source>Project Euclid Complete</source><creator>Costello, Kevin P. ; Tao, Terence ; Vu, Van</creator><creatorcontrib>Costello, Kevin P. ; Tao, Terence ; Vu, Van</creatorcontrib><description>Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fixed δ > 0 . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-06-13527-5</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>05D40 ; 15A52 ; Probabilistic methods ; Random matrices</subject><ispartof>Duke mathematical journal, 2006-11, Vol.135 (2), p.395-413</ispartof><rights>Copyright 2006 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-4c43ff6df931675028e979f22784274c6fb955a818e1199eb39f6020b9a11adc3</citedby><cites>FETCH-LOGICAL-c348t-4c43ff6df931675028e979f22784274c6fb955a818e1199eb39f6020b9a11adc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Costello, Kevin P.</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Vu, Van</creatorcontrib><title>Random symmetric matrices are almost surely nonsingular</title><title>Duke mathematical journal</title><description>Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fixed δ > 0 . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices</description><subject>05D40</subject><subject>15A52</subject><subject>Probabilistic methods</subject><subject>Random matrices</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEURYMoWKufIMwPRHNyz5tS1CoDgrXPIc0kMnUuJZmC_Xs7benT5hz22g8LoXsgD0BBPC4IAYoVMRwTiYEJqrC4QBMQXGHFjL5Ek3PlGt3kvB5PI-kEqS_XVX1b5F3bhiHVvmjdGCEXLoXCNW2fhyJvU2h2Rdd3ue5-to1Lt-gquiaHu1NO0fL15Xs2x-Xn2_vsucSecT1g7jmLUVbRMJBKEKqDUSZSqjSninsZV0YIp0EHAGPCipkoCSUr4wBc5dkUPR13N6lfBz-ErW_qym5S3bq0s72r7WxZnr6nqNq1BZBADKOK7CfEccKnPucU4pkGYkeB9iDQjnYskfYg0Io9h49cnYfwd4Zc-rVSMSWsksKW_EMLYhaWs3-6g3K8</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Costello, Kevin P.</creator><creator>Tao, Terence</creator><creator>Vu, Van</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061101</creationdate><title>Random symmetric matrices are almost surely nonsingular</title><author>Costello, Kevin P. ; Tao, Terence ; Vu, Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-4c43ff6df931675028e979f22784274c6fb955a818e1199eb39f6020b9a11adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05D40</topic><topic>15A52</topic><topic>Probabilistic methods</topic><topic>Random matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costello, Kevin P.</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Vu, Van</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costello, Kevin P.</au><au>Tao, Terence</au><au>Vu, Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random symmetric matrices are almost surely nonsingular</atitle><jtitle>Duke mathematical journal</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>135</volume><issue>2</issue><spage>395</spage><epage>413</epage><pages>395-413</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fixed δ > 0 . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices</abstract><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-06-13527-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2006-11, Vol.135 (2), p.395-413 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1161093270 |
source | Project Euclid Complete |
subjects | 05D40 15A52 Probabilistic methods Random matrices |
title | Random symmetric matrices are almost surely nonsingular |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20symmetric%20matrices%20are%20almost%20surely%20nonsingular&rft.jtitle=Duke%20mathematical%20journal&rft.au=Costello,%20Kevin%20P.&rft.date=2006-11-01&rft.volume=135&rft.issue=2&rft.spage=395&rft.epage=413&rft.pages=395-413&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-06-13527-5&rft_dat=%3Cistex_proje%3Eark_67375_765_L4J8509S_4%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |