Random symmetric matrices are almost surely nonsingular
Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fix...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2006-11, Vol.135 (2), p.395-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Q n denote a random symmetric ( n × n ) -matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1 / 2 ). We prove that Q n is nonsingular with probability 1 - O ( n - 1 / 8 + δ ) for any fixed δ > 0 . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-06-13527-5 |