Galois symmetries of fundamental groupoids and noncommutative geometry

We define a Hopf algebra of motivic iterated integrals on the line and prove an explicit formula for the coproduct Δ in this Hopf algebra. We show that this formula encodes the group law of the automorphism group of a certain noncommutative variety. We relate the coproduct Δ to the coproduct in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2005-06, Vol.128 (2), p.209-284
1. Verfasser: Goncharov, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a Hopf algebra of motivic iterated integrals on the line and prove an explicit formula for the coproduct Δ in this Hopf algebra. We show that this formula encodes the group law of the automorphism group of a certain noncommutative variety. We relate the coproduct Δ to the coproduct in the Hopf algebra of decorated rooted plane trivalent trees, which is a plane decorated version of the one defined by Connes and Kreimer [CK]. As an application, we derive explicit formulas for the coproduct in the motivic multiple polylogarithm Hopf algebra. These formulas play a key role in the mysterious correspondence between the structure of the motivic fundamental group of ℙ 1 - 0 ∞ ∪ μ N , where μ N is the group of all N th roots of unity, and modular varieties for GL m (see [G6], [G7]). In Section 7 we discuss some general principles relating Feynman integrals and mixed motives. They are suggested by Section 4 and the Feynman integral approach for multiple polylogarithms on curves given in [G7]. The appendix contains background material.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-04-12822-2