Cluster algebras and Weil-Petersson forms
In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2005-04, Vol.127 (2), p.291-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 2 |
container_start_page | 291 |
container_title | Duke mathematical journal |
container_volume | 127 |
creator | Gekhtman, Michael Shapiro, Michael Vainshtein, Alek |
description | In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form. |
doi_str_mv | 10.1215/S0012-7094-04-12723-X |
format | Article |
fullrecord | <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1111609853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_ZPJCLMVW_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gpCrh9XZr2xyU4KfRCxobfEybLK7kpo2ZbcF_femH3Quw7zM8x4eQi4ZXDPO1M07AONUQy4pSMq45oJOj8iAKampFnl2TAaHl1NyFuNsc-YpH5Crol3HlQuJab9dFUxMzMImE9e0dOT6PMZukfguzOM5OfGmje5iv4dk_HD_UTzR8u3xubgraS1ktqK5lUx6WVeZtVCB8MYJYbJaGeUlzysHUjKTWaV5VQsBSoBnRjGQqaxAKTEkt7veZehmrl65dd02FpehmZvwh51psBiX-3S_7HyGrJ8U8kyJvkLtKurQxRicP9AMcKMMt8pw4wNB4lYZTnuO7rimV_J7gEz4wVQLrVCnCr9GL0X5-jnBifgHGlFt9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cluster algebras and Weil-Petersson forms</title><source>Project Euclid Complete</source><creator>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</creator><creatorcontrib>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</creatorcontrib><description>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-04-12723-X</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>14M20 ; 30Fxx ; 32G15 ; 53D17 ; 53D30 ; Moduli of Riemann surfaces ; Poisson groupoids and algebroids ; Poisson manifolds ; Rational and unirational varieties [See also 14E08] ; Symplectic structures of moduli spaces ; Teichmüller theory [See also 14H15</subject><ispartof>Duke mathematical journal, 2005-04, Vol.127 (2), p.291-311</ispartof><rights>Copyright 2005 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</citedby><cites>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Shapiro, Michael</creatorcontrib><creatorcontrib>Vainshtein, Alek</creatorcontrib><title>Cluster algebras and Weil-Petersson forms</title><title>Duke mathematical journal</title><description>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</description><subject>14M20</subject><subject>30Fxx</subject><subject>32G15</subject><subject>53D17</subject><subject>53D30</subject><subject>Moduli of Riemann surfaces</subject><subject>Poisson groupoids and algebroids</subject><subject>Poisson manifolds</subject><subject>Rational and unirational varieties [See also 14E08]</subject><subject>Symplectic structures of moduli spaces</subject><subject>Teichmüller theory [See also 14H15</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gpCrh9XZr2xyU4KfRCxobfEybLK7kpo2ZbcF_femH3Quw7zM8x4eQi4ZXDPO1M07AONUQy4pSMq45oJOj8iAKampFnl2TAaHl1NyFuNsc-YpH5Crol3HlQuJab9dFUxMzMImE9e0dOT6PMZukfguzOM5OfGmje5iv4dk_HD_UTzR8u3xubgraS1ktqK5lUx6WVeZtVCB8MYJYbJaGeUlzysHUjKTWaV5VQsBSoBnRjGQqaxAKTEkt7veZehmrl65dd02FpehmZvwh51psBiX-3S_7HyGrJ8U8kyJvkLtKurQxRicP9AMcKMMt8pw4wNB4lYZTnuO7rimV_J7gEz4wVQLrVCnCr9GL0X5-jnBifgHGlFt9Q</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Gekhtman, Michael</creator><creator>Shapiro, Michael</creator><creator>Vainshtein, Alek</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050401</creationdate><title>Cluster algebras and Weil-Petersson forms</title><author>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>14M20</topic><topic>30Fxx</topic><topic>32G15</topic><topic>53D17</topic><topic>53D30</topic><topic>Moduli of Riemann surfaces</topic><topic>Poisson groupoids and algebroids</topic><topic>Poisson manifolds</topic><topic>Rational and unirational varieties [See also 14E08]</topic><topic>Symplectic structures of moduli spaces</topic><topic>Teichmüller theory [See also 14H15</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Shapiro, Michael</creatorcontrib><creatorcontrib>Vainshtein, Alek</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gekhtman, Michael</au><au>Shapiro, Michael</au><au>Vainshtein, Alek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster algebras and Weil-Petersson forms</atitle><jtitle>Duke mathematical journal</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>127</volume><issue>2</issue><spage>291</spage><epage>311</epage><pages>291-311</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</abstract><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-04-12723-X</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2005-04, Vol.127 (2), p.291-311 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1111609853 |
source | Project Euclid Complete |
subjects | 14M20 30Fxx 32G15 53D17 53D30 Moduli of Riemann surfaces Poisson groupoids and algebroids Poisson manifolds Rational and unirational varieties [See also 14E08] Symplectic structures of moduli spaces Teichmüller theory [See also 14H15 |
title | Cluster algebras and Weil-Petersson forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20algebras%20and%20Weil-Petersson%20forms&rft.jtitle=Duke%20mathematical%20journal&rft.au=Gekhtman,%20Michael&rft.date=2005-04-01&rft.volume=127&rft.issue=2&rft.spage=291&rft.epage=311&rft.pages=291-311&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-04-12723-X&rft_dat=%3Cistex_proje%3Eark_67375_765_ZPJCLMVW_W%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |