Cluster algebras and Weil-Petersson forms

In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2005-04, Vol.127 (2), p.291-311
Hauptverfasser: Gekhtman, Michael, Shapiro, Michael, Vainshtein, Alek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 291
container_title Duke mathematical journal
container_volume 127
creator Gekhtman, Michael
Shapiro, Michael
Vainshtein, Alek
description In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.
doi_str_mv 10.1215/S0012-7094-04-12723-X
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1111609853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_ZPJCLMVW_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gpCrh9XZr2xyU4KfRCxobfEybLK7kpo2ZbcF_femH3Quw7zM8x4eQi4ZXDPO1M07AONUQy4pSMq45oJOj8iAKampFnl2TAaHl1NyFuNsc-YpH5Crol3HlQuJab9dFUxMzMImE9e0dOT6PMZukfguzOM5OfGmje5iv4dk_HD_UTzR8u3xubgraS1ktqK5lUx6WVeZtVCB8MYJYbJaGeUlzysHUjKTWaV5VQsBSoBnRjGQqaxAKTEkt7veZehmrl65dd02FpehmZvwh51psBiX-3S_7HyGrJ8U8kyJvkLtKurQxRicP9AMcKMMt8pw4wNB4lYZTnuO7rimV_J7gEz4wVQLrVCnCr9GL0X5-jnBifgHGlFt9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cluster algebras and Weil-Petersson forms</title><source>Project Euclid Complete</source><creator>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</creator><creatorcontrib>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</creatorcontrib><description>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-04-12723-X</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>14M20 ; 30Fxx ; 32G15 ; 53D17 ; 53D30 ; Moduli of Riemann surfaces ; Poisson groupoids and algebroids ; Poisson manifolds ; Rational and unirational varieties [See also 14E08] ; Symplectic structures of moduli spaces ; Teichmüller theory [See also 14H15</subject><ispartof>Duke mathematical journal, 2005-04, Vol.127 (2), p.291-311</ispartof><rights>Copyright 2005 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</citedby><cites>FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Shapiro, Michael</creatorcontrib><creatorcontrib>Vainshtein, Alek</creatorcontrib><title>Cluster algebras and Weil-Petersson forms</title><title>Duke mathematical journal</title><description>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</description><subject>14M20</subject><subject>30Fxx</subject><subject>32G15</subject><subject>53D17</subject><subject>53D30</subject><subject>Moduli of Riemann surfaces</subject><subject>Poisson groupoids and algebroids</subject><subject>Poisson manifolds</subject><subject>Rational and unirational varieties [See also 14E08]</subject><subject>Symplectic structures of moduli spaces</subject><subject>Teichmüller theory [See also 14H15</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gpCrh9XZr2xyU4KfRCxobfEybLK7kpo2ZbcF_femH3Quw7zM8x4eQi4ZXDPO1M07AONUQy4pSMq45oJOj8iAKampFnl2TAaHl1NyFuNsc-YpH5Crol3HlQuJab9dFUxMzMImE9e0dOT6PMZukfguzOM5OfGmje5iv4dk_HD_UTzR8u3xubgraS1ktqK5lUx6WVeZtVCB8MYJYbJaGeUlzysHUjKTWaV5VQsBSoBnRjGQqaxAKTEkt7veZehmrl65dd02FpehmZvwh51psBiX-3S_7HyGrJ8U8kyJvkLtKurQxRicP9AMcKMMt8pw4wNB4lYZTnuO7rimV_J7gEz4wVQLrVCnCr9GL0X5-jnBifgHGlFt9Q</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Gekhtman, Michael</creator><creator>Shapiro, Michael</creator><creator>Vainshtein, Alek</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050401</creationdate><title>Cluster algebras and Weil-Petersson forms</title><author>Gekhtman, Michael ; Shapiro, Michael ; Vainshtein, Alek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9d414f4cb8dd0b03fae33a8c5a5f429be0441a8d572bc330530f1a510464b0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>14M20</topic><topic>30Fxx</topic><topic>32G15</topic><topic>53D17</topic><topic>53D30</topic><topic>Moduli of Riemann surfaces</topic><topic>Poisson groupoids and algebroids</topic><topic>Poisson manifolds</topic><topic>Rational and unirational varieties [See also 14E08]</topic><topic>Symplectic structures of moduli spaces</topic><topic>Teichmüller theory [See also 14H15</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Shapiro, Michael</creatorcontrib><creatorcontrib>Vainshtein, Alek</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gekhtman, Michael</au><au>Shapiro, Michael</au><au>Vainshtein, Alek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster algebras and Weil-Petersson forms</atitle><jtitle>Duke mathematical journal</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>127</volume><issue>2</issue><spage>291</spage><epage>311</epage><pages>291-311</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.</abstract><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-04-12723-X</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2005-04, Vol.127 (2), p.291-311
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1111609853
source Project Euclid Complete
subjects 14M20
30Fxx
32G15
53D17
53D30
Moduli of Riemann surfaces
Poisson groupoids and algebroids
Poisson manifolds
Rational and unirational varieties [See also 14E08]
Symplectic structures of moduli spaces
Teichmüller theory [See also 14H15
title Cluster algebras and Weil-Petersson forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20algebras%20and%20Weil-Petersson%20forms&rft.jtitle=Duke%20mathematical%20journal&rft.au=Gekhtman,%20Michael&rft.date=2005-04-01&rft.volume=127&rft.issue=2&rft.spage=291&rft.epage=311&rft.pages=291-311&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-04-12723-X&rft_dat=%3Cistex_proje%3Eark_67375_765_ZPJCLMVW_W%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true