Cluster algebras and Weil-Petersson forms

In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2005-04, Vol.127 (2), p.291-311
Hauptverfasser: Gekhtman, Michael, Shapiro, Michael, Vainshtein, Alek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-04-12723-X