q-series identities and values of certain L-functions

As usual, define Dedekind's eta-function η(z) by the infinite product In a recent paper, D. Zagier proved that (note: empty products equal 1 throughout) where the series D(q) and E(q) are defined by Here d(n) denotes the number of positive divisors of n. We obtain two infinite families of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2001-06, Vol.108 (3), p.395-419
Hauptverfasser: Andrews, George E., Jiménez-Urroz, Jorge, Ono, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As usual, define Dedekind's eta-function η(z) by the infinite product In a recent paper, D. Zagier proved that (note: empty products equal 1 throughout) where the series D(q) and E(q) are defined by Here d(n) denotes the number of positive divisors of n. We obtain two infinite families of such identities and describe some consequences for L-functions and partitions. For example, if χ 2 is the Kronecker character for ℚ(), these identities can be used to show that
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-01-10831-4