On irreducibility of tensor products of Yangian modules associated with skew Young diagrams
We study the tensor product $W$ of any number of irreducible finite-dimensional modules $V\sb 1,\ldots V\sb k$ over the Yangian ${\rm Y}(\mathfrak {gl}\sb N)$ of the general linear Lie algebra $\mathfrak {gl}\sb N$. For any indices $i,j=1,\ldots k$, there is a canonical nonzero intertwining operator...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2002-04, Vol.112 (2), p.343-378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the tensor product $W$ of any number of irreducible finite-dimensional modules $V\sb 1,\ldots V\sb k$ over the Yangian ${\rm Y}(\mathfrak {gl}\sb N)$ of the general linear Lie algebra $\mathfrak {gl}\sb N$. For any indices $i,j=1,\ldots k$, there is a canonical nonzero intertwining operator $J\sb {ij} : V\sb i\otimes V\sb j\to V\sb j\otimes V\sb i$. It has been conjectured that the tensor product $W$ is irreducible if and only if all operators $J\sb {ij}$ with $i |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-9074-02-11225-3 |