On irreducibility of tensor products of Yangian modules associated with skew Young diagrams

We study the tensor product $W$ of any number of irreducible finite-dimensional modules $V\sb 1,\ldots V\sb k$ over the Yangian ${\rm Y}(\mathfrak {gl}\sb N)$ of the general linear Lie algebra $\mathfrak {gl}\sb N$. For any indices $i,j=1,\ldots k$, there is a canonical nonzero intertwining operator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2002-04, Vol.112 (2), p.343-378
Hauptverfasser: Nazarov, Maxim, Tarasov, Vitaly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the tensor product $W$ of any number of irreducible finite-dimensional modules $V\sb 1,\ldots V\sb k$ over the Yangian ${\rm Y}(\mathfrak {gl}\sb N)$ of the general linear Lie algebra $\mathfrak {gl}\sb N$. For any indices $i,j=1,\ldots k$, there is a canonical nonzero intertwining operator $J\sb {ij} : V\sb i\otimes V\sb j\to V\sb j\otimes V\sb i$. It has been conjectured that the tensor product $W$ is irreducible if and only if all operators $J\sb {ij}$ with $i
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-9074-02-11225-3