Integration of twisted Dirac brackets

Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2004-06, Vol.123 (3), p.549-607
Hauptverfasser: Bursztyn, Henrique, Crainic, Marius, Weinstein, Alan, Zhu, Chenchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-04-12335-8