Integration of twisted Dirac brackets
Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2004-06, Vol.123 (3), p.549-607 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-04-12335-8 |