Limiting vorticities for the Ginzburg-Landau equations

We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the "London limit" of a Ginzburg-Landau p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2003-04, Vol.117 (3), p.403-446
Hauptverfasser: Sandier, Etienne, Serfaty, Sylvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the "London limit" of a Ginzburg-Landau parameter $\kappa$ tending to $\infty$. We examine the asymptotic behavior of the "vorticity measures" associated to the vortices of the solution, and we prove that passing to the limit in the equations (via the "stress-energy tensor") yields a criticality condition on the limiting measures. This condition allows us to describe the possible locations and densities of the vortices. We establish analogous results for the Ginzburg-Landau equation without magnetic field.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-03-11732-9