Limiting vorticities for the Ginzburg-Landau equations
We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the "London limit" of a Ginzburg-Landau p...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2003-04, Vol.117 (3), p.403-446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the "London limit" of a Ginzburg-Landau parameter $\kappa$ tending to $\infty$. We examine the asymptotic behavior of the "vorticity measures" associated to the vortices of the solution, and we prove that passing to the limit in the equations (via the "stress-energy tensor") yields a criticality condition on the limiting measures. This condition allows us to describe the possible locations and densities of the vortices. We establish analogous results for the Ginzburg-Landau equation without magnetic field. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-03-11732-9 |