Moments for primes in arithmetic progressions, II

The third moment \[ \sum\limits_{z \leqslant 0} {\sum\limits_{a = 1}^q {(\psi (x;q,a) - \rho (x;q,a))^3 } } \] ¶ is investigated with the novel approximation \[ \rho (x;q,a) = \sum\limits_\substack{ n \leqslant x \\ n \equiv a({\text{mod}}\;q) } {F_R (n),} \] ¶ where \[ F_R (n) = \sum\limits_{r \leq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2003-11, Vol.120 (2), p.385-403
1. Verfasser: Vaughan, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The third moment \[ \sum\limits_{z \leqslant 0} {\sum\limits_{a = 1}^q {(\psi (x;q,a) - \rho (x;q,a))^3 } } \] ¶ is investigated with the novel approximation \[ \rho (x;q,a) = \sum\limits_\substack{ n \leqslant x \\ n \equiv a({\text{mod}}\;q) } {F_R (n),} \] ¶ where \[ F_R (n) = \sum\limits_{r \leqslant R} {\frac{{\mu (r)}} {{\phi (r)}}\sum\limits_\substack{ b = 1 \\ (b,r) = 1 } ^r {e(bn/r),} } \] ¶ and it is shown that when R\leq \log \sp Ax , this leads to more precise conclusions than those obtained by Hooley in the classical case.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-03-12027-X