Moments for primes in arithmetic progressions, II
The third moment \[ \sum\limits_{z \leqslant 0} {\sum\limits_{a = 1}^q {(\psi (x;q,a) - \rho (x;q,a))^3 } } \] ¶ is investigated with the novel approximation \[ \rho (x;q,a) = \sum\limits_\substack{ n \leqslant x \\ n \equiv a({\text{mod}}\;q) } {F_R (n),} \] ¶ where \[ F_R (n) = \sum\limits_{r \leq...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2003-11, Vol.120 (2), p.385-403 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The third moment
\[ \sum\limits_{z \leqslant 0} {\sum\limits_{a = 1}^q {(\psi (x;q,a) - \rho (x;q,a))^3 } } \]
¶ is investigated with the novel approximation
\[ \rho (x;q,a) = \sum\limits_\substack{ n \leqslant x \\ n \equiv a({\text{mod}}\;q) } {F_R (n),} \]
¶ where
\[ F_R (n) = \sum\limits_{r \leqslant R} {\frac{{\mu (r)}} {{\phi (r)}}\sum\limits_\substack{ b = 1 \\ (b,r) = 1 } ^r {e(bn/r),} } \]
¶ and it is shown that when R\leq \log \sp Ax , this leads to more
precise conclusions than those obtained by Hooley in the classical
case. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-03-12027-X |