Holomorphic triangle invariants and the topology of symplectic four-manifolds

This article analyzes the interplay between symplectic geometry in dimension $4$ and the invariants for smooth four-manifolds constructed using holomorphic triangles introduced in [20]. Specifically, we establish a nonvanishing result for the invariants of symplectic four-manifolds, which leads to n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2004-01, Vol.121 (1), p.1-34
Hauptverfasser: Ozsváth, Peter, Szabó, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article analyzes the interplay between symplectic geometry in dimension $4$ and the invariants for smooth four-manifolds constructed using holomorphic triangles introduced in [20]. Specifically, we establish a nonvanishing result for the invariants of symplectic four-manifolds, which leads to new proofs of the indecomposability theorem for symplectic four-manifolds and the symplectic Thom conjecture. As a new application, we generalize the indecomposability theorem to splittings of four-manifolds along a certain class of three-manifolds obtained by plumbings of spheres. This leads to restrictions on the topology of Stein fillings of such three-manifolds.
ISSN:0012-7094
1547-7398
DOI:10.1215/s0012-7094-04-12111-6