Holomorphic triangle invariants and the topology of symplectic four-manifolds
This article analyzes the interplay between symplectic geometry in dimension $4$ and the invariants for smooth four-manifolds constructed using holomorphic triangles introduced in [20]. Specifically, we establish a nonvanishing result for the invariants of symplectic four-manifolds, which leads to n...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2004-01, Vol.121 (1), p.1-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article analyzes the interplay between symplectic geometry in dimension $4$ and the invariants for smooth four-manifolds constructed using holomorphic triangles introduced in [20]. Specifically, we establish a nonvanishing result for the invariants of symplectic four-manifolds, which leads to new proofs of the indecomposability theorem for symplectic four-manifolds and the symplectic Thom conjecture. As a new application, we generalize the indecomposability theorem to splittings of four-manifolds along a certain class of three-manifolds obtained by plumbings of spheres. This leads to restrictions on the topology of Stein fillings of such three-manifolds. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/s0012-7094-04-12111-6 |