Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability
We propose a way to efficiently treat the well-known transparent boundary conditions for the Schrödinger equation. Our approach is based on two ideas: to write out a discrete transparent boundary condition (DTBC) using the Crank-Nicolson finite difference scheme for the governing equation, and to ap...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical sciences 2003, Vol.1 (3), p.501-556 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a way to efficiently treat the well-known transparent boundary conditions
for the Schrödinger equation. Our approach is based on two ideas: to write out a discrete transparent
boundary condition (DTBC) using the Crank-Nicolson finite difference scheme for the governing
equation, and to approximate the discrete convolution kernel of DTBC by sum-of-exponentials for a
rapid recursive calculation of the convolution.
¶ We prove stability of the resulting initial-boundary value scheme, give error estimates for the
considered approximation of the boundary condition, and illustrate the efficiency of the proposed
method on several examples. |
---|---|
ISSN: | 1539-6746 1945-0796 |
DOI: | 10.4310/CMS.2003.v1.n3.a7 |