Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability

We propose a way to efficiently treat the well-known transparent boundary conditions for the Schrödinger equation. Our approach is based on two ideas: to write out a discrete transparent boundary condition (DTBC) using the Crank-Nicolson finite difference scheme for the governing equation, and to ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical sciences 2003, Vol.1 (3), p.501-556
Hauptverfasser: Arnold, Anton, Ehrhardt, Matthias, Sofronov, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a way to efficiently treat the well-known transparent boundary conditions for the Schrödinger equation. Our approach is based on two ideas: to write out a discrete transparent boundary condition (DTBC) using the Crank-Nicolson finite difference scheme for the governing equation, and to approximate the discrete convolution kernel of DTBC by sum-of-exponentials for a rapid recursive calculation of the convolution. ¶ We prove stability of the resulting initial-boundary value scheme, give error estimates for the considered approximation of the boundary condition, and illustrate the efficiency of the proposed method on several examples.
ISSN:1539-6746
1945-0796
DOI:10.4310/CMS.2003.v1.n3.a7