Finite volume schemes on Lorentzian manifolds

We investigate the numerical approximation of (discontinuous) entropy solutions to nonlinear hyperbolic conservation laws posed on a Lorentzian manifold. Our main result establishes the convergence of monotone and first-order finite volume schemes for a large class of (space and time) triangulations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical sciences 2008, Vol.6 (4), p.1059-1086
Hauptverfasser: Amorim, P., LeFloch, P. G., Okutmustur, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the numerical approximation of (discontinuous) entropy solutions to nonlinear hyperbolic conservation laws posed on a Lorentzian manifold. Our main result establishes the convergence of monotone and first-order finite volume schemes for a large class of (space and time) triangulations. The proof relies on a discrete version of entropy inequalities and an entropy dissipation bound, which take into account the manifold geometry and were originally discovered by Cockburn, Coquel, and LeFloch in the (flat) Euclidian setting.
ISSN:1539-6746
1945-0796
DOI:10.4310/CMS.2008.v6.n4.a13