Finite volume schemes on Lorentzian manifolds
We investigate the numerical approximation of (discontinuous) entropy solutions to nonlinear hyperbolic conservation laws posed on a Lorentzian manifold. Our main result establishes the convergence of monotone and first-order finite volume schemes for a large class of (space and time) triangulations...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical sciences 2008, Vol.6 (4), p.1059-1086 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the numerical approximation of (discontinuous) entropy solutions to
nonlinear hyperbolic conservation laws posed on a Lorentzian manifold. Our main result establishes
the convergence of monotone and first-order finite volume schemes for a large class of (space and
time) triangulations. The proof relies on a discrete version of entropy inequalities and an entropy
dissipation bound, which take into account the manifold geometry and were originally discovered by
Cockburn, Coquel, and LeFloch in the (flat) Euclidian setting. |
---|---|
ISSN: | 1539-6746 1945-0796 |
DOI: | 10.4310/CMS.2008.v6.n4.a13 |