Self-similar solutions of the non-strictly hyperbolic Whitham equations

We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical sciences 2006, Vol.4 (4), p.799-822
Hauptverfasser: Pierce, Virgil U., Tian, Fei-Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 4
container_start_page 799
container_title Communications in mathematical sciences
container_volume 4
creator Pierce, Virgil U.
Tian, Fei-Ran
description We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.
doi_str_mv 10.4310/CMS.2006.v4.n4.a7
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_cms_1175797612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_CMS_2006_v4_n4_a7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcP4F1fIDUnSZPlTim6CRMvNvEypFlKM9pmJt1gb2_nhlf_4Yf_4_Ah9Agk5wzIU_mxyikhIj_wvOe5kVdoAooXmEglrse7YAoLycUtuktpSwhIyeUEzVeurXHynW9NzFJo94MPfcpCnQ2Ny_rQ4zREb4f2mDXHnYtVaL3Nvhs_NKbL3M_e_A3u0U1t2uQeLjlF67fXdbnAy8_5e_myxJZRNuBNVcwAnLQcZkRRJRSrNsZSVdTUGTt-KZlRdQVA-MyOHaOUMwqGOi5Ewabo-YzdxbB1dnB72_qN3kXfmXjUwXhdfi0v7SVslzSALKSSAuiIgDPCxpBSdPX_Gog-udSjS31yqQ9c91wbyX4BMLtqCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><source>International Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pierce, Virgil U. ; Tian, Fei-Ran</creator><creatorcontrib>Pierce, Virgil U. ; Tian, Fei-Ran</creatorcontrib><description>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</description><identifier>ISSN: 1539-6746</identifier><identifier>EISSN: 1945-0796</identifier><identifier>DOI: 10.4310/CMS.2006.v4.n4.a7</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>35C05 ; 35L65 ; 35L67 ; 35Q53 ; non-strictly hyperbolic equations ; Whitham equations ; Zero dispersion limit</subject><ispartof>Communications in mathematical sciences, 2006, Vol.4 (4), p.799-822</ispartof><rights>Copyright 2006 International Press of Boston</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,4012,27912,27913,27914</link.rule.ids></links><search><creatorcontrib>Pierce, Virgil U.</creatorcontrib><creatorcontrib>Tian, Fei-Ran</creatorcontrib><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><title>Communications in mathematical sciences</title><description>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</description><subject>35C05</subject><subject>35L65</subject><subject>35L67</subject><subject>35Q53</subject><subject>non-strictly hyperbolic equations</subject><subject>Whitham equations</subject><subject>Zero dispersion limit</subject><issn>1539-6746</issn><issn>1945-0796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcP4F1fIDUnSZPlTim6CRMvNvEypFlKM9pmJt1gb2_nhlf_4Yf_4_Ah9Agk5wzIU_mxyikhIj_wvOe5kVdoAooXmEglrse7YAoLycUtuktpSwhIyeUEzVeurXHynW9NzFJo94MPfcpCnQ2Ny_rQ4zREb4f2mDXHnYtVaL3Nvhs_NKbL3M_e_A3u0U1t2uQeLjlF67fXdbnAy8_5e_myxJZRNuBNVcwAnLQcZkRRJRSrNsZSVdTUGTt-KZlRdQVA-MyOHaOUMwqGOi5Ewabo-YzdxbB1dnB72_qN3kXfmXjUwXhdfi0v7SVslzSALKSSAuiIgDPCxpBSdPX_Gog-udSjS31yqQ9c91wbyX4BMLtqCw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pierce, Virgil U.</creator><creator>Tian, Fei-Ran</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2006</creationdate><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><author>Pierce, Virgil U. ; Tian, Fei-Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>35C05</topic><topic>35L65</topic><topic>35L67</topic><topic>35Q53</topic><topic>non-strictly hyperbolic equations</topic><topic>Whitham equations</topic><topic>Zero dispersion limit</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierce, Virgil U.</creatorcontrib><creatorcontrib>Tian, Fei-Ran</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, Virgil U.</au><au>Tian, Fei-Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar solutions of the non-strictly hyperbolic Whitham equations</atitle><jtitle>Communications in mathematical sciences</jtitle><date>2006</date><risdate>2006</risdate><volume>4</volume><issue>4</issue><spage>799</spage><epage>822</epage><pages>799-822</pages><issn>1539-6746</issn><eissn>1945-0796</eissn><abstract>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</abstract><pub>International Press of Boston</pub><doi>10.4310/CMS.2006.v4.n4.a7</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-6746
ispartof Communications in mathematical sciences, 2006, Vol.4 (4), p.799-822
issn 1539-6746
1945-0796
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_cms_1175797612
source International Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 35C05
35L65
35L67
35Q53
non-strictly hyperbolic equations
Whitham equations
Zero dispersion limit
title Self-similar solutions of the non-strictly hyperbolic Whitham equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20solutions%20of%20the%20non-strictly%20hyperbolic%20Whitham%20equations&rft.jtitle=Communications%20in%20mathematical%20sciences&rft.au=Pierce,%20Virgil%20U.&rft.date=2006&rft.volume=4&rft.issue=4&rft.spage=799&rft.epage=822&rft.pages=799-822&rft.issn=1539-6746&rft.eissn=1945-0796&rft_id=info:doi/10.4310/CMS.2006.v4.n4.a7&rft_dat=%3Ccrossref_proje%3E10_4310_CMS_2006_v4_n4_a7%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true