Self-similar solutions of the non-strictly hyperbolic Whitham equations
We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight d...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical sciences 2006, Vol.4 (4), p.799-822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 4 |
container_start_page | 799 |
container_title | Communications in mathematical sciences |
container_volume | 4 |
creator | Pierce, Virgil U. Tian, Fei-Ran |
description | We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type. |
doi_str_mv | 10.4310/CMS.2006.v4.n4.a7 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_cms_1175797612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_CMS_2006_v4_n4_a7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcP4F1fIDUnSZPlTim6CRMvNvEypFlKM9pmJt1gb2_nhlf_4Yf_4_Ah9Agk5wzIU_mxyikhIj_wvOe5kVdoAooXmEglrse7YAoLycUtuktpSwhIyeUEzVeurXHynW9NzFJo94MPfcpCnQ2Ny_rQ4zREb4f2mDXHnYtVaL3Nvhs_NKbL3M_e_A3u0U1t2uQeLjlF67fXdbnAy8_5e_myxJZRNuBNVcwAnLQcZkRRJRSrNsZSVdTUGTt-KZlRdQVA-MyOHaOUMwqGOi5Ewabo-YzdxbB1dnB72_qN3kXfmXjUwXhdfi0v7SVslzSALKSSAuiIgDPCxpBSdPX_Gog-udSjS31yqQ9c91wbyX4BMLtqCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><source>International Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pierce, Virgil U. ; Tian, Fei-Ran</creator><creatorcontrib>Pierce, Virgil U. ; Tian, Fei-Ran</creatorcontrib><description>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</description><identifier>ISSN: 1539-6746</identifier><identifier>EISSN: 1945-0796</identifier><identifier>DOI: 10.4310/CMS.2006.v4.n4.a7</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>35C05 ; 35L65 ; 35L67 ; 35Q53 ; non-strictly hyperbolic equations ; Whitham equations ; Zero dispersion limit</subject><ispartof>Communications in mathematical sciences, 2006, Vol.4 (4), p.799-822</ispartof><rights>Copyright 2006 International Press of Boston</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,4012,27912,27913,27914</link.rule.ids></links><search><creatorcontrib>Pierce, Virgil U.</creatorcontrib><creatorcontrib>Tian, Fei-Ran</creatorcontrib><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><title>Communications in mathematical sciences</title><description>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</description><subject>35C05</subject><subject>35L65</subject><subject>35L67</subject><subject>35Q53</subject><subject>non-strictly hyperbolic equations</subject><subject>Whitham equations</subject><subject>Zero dispersion limit</subject><issn>1539-6746</issn><issn>1945-0796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcP4F1fIDUnSZPlTim6CRMvNvEypFlKM9pmJt1gb2_nhlf_4Yf_4_Ah9Agk5wzIU_mxyikhIj_wvOe5kVdoAooXmEglrse7YAoLycUtuktpSwhIyeUEzVeurXHynW9NzFJo94MPfcpCnQ2Ny_rQ4zREb4f2mDXHnYtVaL3Nvhs_NKbL3M_e_A3u0U1t2uQeLjlF67fXdbnAy8_5e_myxJZRNuBNVcwAnLQcZkRRJRSrNsZSVdTUGTt-KZlRdQVA-MyOHaOUMwqGOi5Ewabo-YzdxbB1dnB72_qN3kXfmXjUwXhdfi0v7SVslzSALKSSAuiIgDPCxpBSdPX_Gog-udSjS31yqQ9c91wbyX4BMLtqCw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pierce, Virgil U.</creator><creator>Tian, Fei-Ran</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2006</creationdate><title>Self-similar solutions of the non-strictly hyperbolic Whitham equations</title><author>Pierce, Virgil U. ; Tian, Fei-Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-db5811e7c4180929693bdac295f2eac15373a9fb11048cf2e3224321a2e46653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>35C05</topic><topic>35L65</topic><topic>35L67</topic><topic>35Q53</topic><topic>non-strictly hyperbolic equations</topic><topic>Whitham equations</topic><topic>Zero dispersion limit</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierce, Virgil U.</creatorcontrib><creatorcontrib>Tian, Fei-Ran</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, Virgil U.</au><au>Tian, Fei-Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar solutions of the non-strictly hyperbolic Whitham equations</atitle><jtitle>Communications in mathematical sciences</jtitle><date>2006</date><risdate>2006</risdate><volume>4</volume><issue>4</issue><spage>799</spage><epage>822</epage><pages>799-822</pages><issn>1539-6746</issn><eissn>1945-0796</eissn><abstract>We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type.</abstract><pub>International Press of Boston</pub><doi>10.4310/CMS.2006.v4.n4.a7</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-6746 |
ispartof | Communications in mathematical sciences, 2006, Vol.4 (4), p.799-822 |
issn | 1539-6746 1945-0796 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_cms_1175797612 |
source | International Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 35C05 35L65 35L67 35Q53 non-strictly hyperbolic equations Whitham equations Zero dispersion limit |
title | Self-similar solutions of the non-strictly hyperbolic Whitham equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20solutions%20of%20the%20non-strictly%20hyperbolic%20Whitham%20equations&rft.jtitle=Communications%20in%20mathematical%20sciences&rft.au=Pierce,%20Virgil%20U.&rft.date=2006&rft.volume=4&rft.issue=4&rft.spage=799&rft.epage=822&rft.pages=799-822&rft.issn=1539-6746&rft.eissn=1945-0796&rft_id=info:doi/10.4310/CMS.2006.v4.n4.a7&rft_dat=%3Ccrossref_proje%3E10_4310_CMS_2006_v4_n4_a7%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |