Self-similar solutions of the non-strictly hyperbolic Whitham equations
We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight d...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical sciences 2006, Vol.4 (4), p.799-822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Whitham equations for the fifth order KdV equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the Whitham equations when the initial values are given by a step function. We classify the step-like initial data into eight different types. We construct self-similar solutions for each type. |
---|---|
ISSN: | 1539-6746 1945-0796 |
DOI: | 10.4310/CMS.2006.v4.n4.a7 |