On the Equation Satisfied by a Steady Prandtl-Munk Vortex Sheet

We show the the voricity distribution obtained by minimizing the induced drag on a wing, the so called Prandtl-Munk vortex sheet, is not a travelling-wave weak solution of the Euler equations, contrary to what has been claimed by a number of authors. Instead, it is a weak solution of a non-homogeneo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical sciences 2003, Vol.1 (1), p.68-73
Hauptverfasser: Lopes Filho, Milton C., Nussenzeig Lopes, Helena J., Souza, Max O.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the the voricity distribution obtained by minimizing the induced drag on a wing, the so called Prandtl-Munk vortex sheet, is not a travelling-wave weak solution of the Euler equations, contrary to what has been claimed by a number of authors. Instead, it is a weak solution of a non-homogeneous Euler equation, where the forcing term represents a "tension" force applied to the tips. This is consistent with a heuristic arguement due to Saffman. Thus, the notion of weak solution captures the correct physical behavior in this case.
ISSN:1539-6746
1945-0796
DOI:10.4310/CMS.2003.v1.n1.a6