Local limit theorems via Landau-Kolmogorov inequalities

In this article, we prove new inequalities between some common probability metrics. Using these inequalities, we obtain novel local limit theorems for the magnetization in the Curie-Weiss model at high temperature, the number of triangles and isolated vertices in Erdõs-Rényi random graphs, as well a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2015-05, Vol.21 (2), p.851-880
Hauptverfasser: RÖLLIN, ADRIAN, ROSS, NATHAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we prove new inequalities between some common probability metrics. Using these inequalities, we obtain novel local limit theorems for the magnetization in the Curie-Weiss model at high temperature, the number of triangles and isolated vertices in Erdõs-Rényi random graphs, as well as the independence number in a geometric random graph. We also give upper bounds on the rates of convergence for these local limit theorems and also for some other probability metrics. Our proofs are based on the Landau-Kolmogorov inequalities and new smoothing techniques.
ISSN:1350-7265
1573-9759
DOI:10.3150/13-BEJ590