A compact LIL for martingales in 2-smooth Banach spaces with applications

We prove the compact law of the iterated logarithm for stationary and ergodic differences of (reverse or not) martingales taking values in a separable 2-smooth Banach space (for instance a Hubert space). Then, in the martingale case, the almost sure invariance principle is derived from a result of B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2015-02, Vol.21 (1), p.374-400
1. Verfasser: CUNY, CHRISTOPHE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the compact law of the iterated logarithm for stationary and ergodic differences of (reverse or not) martingales taking values in a separable 2-smooth Banach space (for instance a Hubert space). Then, in the martingale case, the almost sure invariance principle is derived from a result of Berger. From those results, we deduce the almost sure invariance principle for stationary processes under the Hannan condition and the compact law of the iterated logarithm for stationary processes arising from non-invertible dynamical systems. Those results for stationary processes are new, even in the real valued case. We also obtain the Marcinkiewicz-Zygmund strong law of large numbers for stationary processes with values in some smooth Banach spaces. Applications to several situations are given.
ISSN:1350-7265
1573-9759
DOI:10.3150/13-BEJ571