Uniform convergence of convolution estimators for the response density in nonparametric regression
We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2013-11, Vol.19 (5B), p.2250-2276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2276 |
---|---|
container_issue | 5B |
container_start_page | 2250 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 19 |
creator | SCHICK, ANTON WEFELMEYER, WOLFGANG |
description | We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient. |
doi_str_mv | 10.3150/12-BEJ451 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1386078602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42919359</jstor_id><sourcerecordid>42919359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-5a2fe10b4e487444fc8e968bca433b3feabac136e8a8aad310826ffc0f63f1af3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhbNQsFYX_gAhWxejeU06sxIt9UXBjV2HTHpTM7TJkKRC_73RKV1cDvfyncPlIHRDyT2nNXmgrHpefIianqEJ5TWpZkzWF-gypZ4QKqQkE9StvLMh7rAJ_gfiBrwBHOz_Grb77ILHkLLb6RxiwgXF-RtwhDQEnwCvwSeXD9h57IMfdNQ7yNGZQmwKlIr_Cp1bvU1wfdQpWr0svuZv1fLz9X3-tKwMFyxXtWYWKOkEiGYmhLCmgVY2ndGC845b0J02lEtodKP1mlPSMGmtIVZyS7XlU_Q45g4x9GAy7M3WrdUQy_PxoIJ2ar5aHq9H6XpFeSPJrAwrCXdjgokhpQj2ZKZE_VWqKFNjpYW9Hdk-lWZOoGAtbXnd8l8yqnjz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform convergence of convolution estimators for the response density in nonparametric regression</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>SCHICK, ANTON ; WEFELMEYER, WOLFGANG</creator><creatorcontrib>SCHICK, ANTON ; WEFELMEYER, WOLFGANG</creatorcontrib><description>We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/12-BEJ451</identifier><language>eng</language><publisher>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</publisher><subject>Arithmetic mean ; Central limit theorem ; Consistent estimators ; Density ; Density estimation ; density estimator ; efficient estimator ; efficient influence function ; Estimators ; functional central limit theorem ; local polynomial smoother ; local U-statistic ; local von Mises statistic ; Mathematical functions ; monotone regression function ; Regression analysis ; Statism ; Statistical estimation</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2013-11, Vol.19 (5B), p.2250-2276</ispartof><rights>2013 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2013 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-5a2fe10b4e487444fc8e968bca433b3feabac136e8a8aad310826ffc0f63f1af3</citedby><cites>FETCH-LOGICAL-c342t-5a2fe10b4e487444fc8e968bca433b3feabac136e8a8aad310826ffc0f63f1af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42919359$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42919359$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>SCHICK, ANTON</creatorcontrib><creatorcontrib>WEFELMEYER, WOLFGANG</creatorcontrib><title>Uniform convergence of convolution estimators for the response density in nonparametric regression</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient.</description><subject>Arithmetic mean</subject><subject>Central limit theorem</subject><subject>Consistent estimators</subject><subject>Density</subject><subject>Density estimation</subject><subject>density estimator</subject><subject>efficient estimator</subject><subject>efficient influence function</subject><subject>Estimators</subject><subject>functional central limit theorem</subject><subject>local polynomial smoother</subject><subject>local U-statistic</subject><subject>local von Mises statistic</subject><subject>Mathematical functions</subject><subject>monotone regression function</subject><subject>Regression analysis</subject><subject>Statism</subject><subject>Statistical estimation</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhbNQsFYX_gAhWxejeU06sxIt9UXBjV2HTHpTM7TJkKRC_73RKV1cDvfyncPlIHRDyT2nNXmgrHpefIianqEJ5TWpZkzWF-gypZ4QKqQkE9StvLMh7rAJ_gfiBrwBHOz_Grb77ILHkLLb6RxiwgXF-RtwhDQEnwCvwSeXD9h57IMfdNQ7yNGZQmwKlIr_Cp1bvU1wfdQpWr0svuZv1fLz9X3-tKwMFyxXtWYWKOkEiGYmhLCmgVY2ndGC845b0J02lEtodKP1mlPSMGmtIVZyS7XlU_Q45g4x9GAy7M3WrdUQy_PxoIJ2ar5aHq9H6XpFeSPJrAwrCXdjgokhpQj2ZKZE_VWqKFNjpYW9Hdk-lWZOoGAtbXnd8l8yqnjz</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>SCHICK, ANTON</creator><creator>WEFELMEYER, WOLFGANG</creator><general>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>Uniform convergence of convolution estimators for the response density in nonparametric regression</title><author>SCHICK, ANTON ; WEFELMEYER, WOLFGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-5a2fe10b4e487444fc8e968bca433b3feabac136e8a8aad310826ffc0f63f1af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arithmetic mean</topic><topic>Central limit theorem</topic><topic>Consistent estimators</topic><topic>Density</topic><topic>Density estimation</topic><topic>density estimator</topic><topic>efficient estimator</topic><topic>efficient influence function</topic><topic>Estimators</topic><topic>functional central limit theorem</topic><topic>local polynomial smoother</topic><topic>local U-statistic</topic><topic>local von Mises statistic</topic><topic>Mathematical functions</topic><topic>monotone regression function</topic><topic>Regression analysis</topic><topic>Statism</topic><topic>Statistical estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHICK, ANTON</creatorcontrib><creatorcontrib>WEFELMEYER, WOLFGANG</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHICK, ANTON</au><au>WEFELMEYER, WOLFGANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform convergence of convolution estimators for the response density in nonparametric regression</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>19</volume><issue>5B</issue><spage>2250</spage><epage>2276</epage><pages>2250-2276</pages><issn>1350-7265</issn><abstract>We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient.</abstract><pub>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/12-BEJ451</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2013-11, Vol.19 (5B), p.2250-2276 |
issn | 1350-7265 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1386078602 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | Arithmetic mean Central limit theorem Consistent estimators Density Density estimation density estimator efficient estimator efficient influence function Estimators functional central limit theorem local polynomial smoother local U-statistic local von Mises statistic Mathematical functions monotone regression function Regression analysis Statism Statistical estimation |
title | Uniform convergence of convolution estimators for the response density in nonparametric regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20convergence%20of%20convolution%20estimators%20for%20the%20response%20density%20in%20nonparametric%20regression&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=SCHICK,%20ANTON&rft.date=2013-11-01&rft.volume=19&rft.issue=5B&rft.spage=2250&rft.epage=2276&rft.pages=2250-2276&rft.issn=1350-7265&rft_id=info:doi/10.3150/12-BEJ451&rft_dat=%3Cjstor_proje%3E42919359%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=42919359&rfr_iscdi=true |