Uniform convergence of convolution estimators for the response density in nonparametric regression
We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2013-11, Vol.19 (5B), p.2250-2276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient. |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.3150/12-BEJ451 |