Uniform convergence of convolution estimators for the response density in nonparametric regression

We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2013-11, Vol.19 (5B), p.2250-2276
Hauptverfasser: SCHICK, ANTON, WEFELMEYER, WOLFGANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a nonparametric regression model Y = r(X) + ε with a random covariate X that is independent of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolution estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the corresponding process obeys a functional central limit theorem in the space C₀(ℝ) of continuous functions vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive correction that makes it efficient.
ISSN:1350-7265
DOI:10.3150/12-BEJ451