Geometry of iteration stable tessellations: Connection with Poisson hyperplanes
Since the seminal work by Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible, yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. We provide in this paper...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2013-11, Vol.19 (5A), p.1637-1654 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the seminal work by Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible, yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. We provide in this paper a fundamental link between typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane tessellations using martingale techniques and general theory of piecewise deterministic Markov processes (PDMPs). As applications, new mean values and new distributional results for the STIT model are obtained. |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.3150/12-BEJ424 |