Coupling property and gradient estimates of Lévy processes via the symbol
We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our resu...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2012-11, Vol.18 (4), p.1128-1149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1149 |
---|---|
container_issue | 4 |
container_start_page | 1128 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 18 |
creator | SCHILLING, RENÉ L. SZTONYK, PAWEŁ WANG, JIAN |
description | We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes. |
doi_str_mv | 10.3150/11-bej375 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1352727804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41714084</jstor_id><sourcerecordid>41714084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhL0AiVJYcAAkb1kE7NiOkxWCqPxUkdjQtWXHdkmU1pHtVsqROAcXw1WrrkYafW80bwC4w-iRYIaeMM6U6QlnF2CGCUMZzwt2Ba5D6BHCtCjQDCxrtxuHbruGo3ej8XGCcqvh2kvdmW2EJsRuI6MJ0FnY_P3upwPYmhCSte8kjD8Ghmmj3HADLq0cgrk96Rys3hbf9UfWfL1_1i9N1lJUxowyzBWzmjLGbKGksi2neUWUlBXRVWUQJdSUWlFGLUJWS5tr3lrMpWKKlGQOno-5qUhv2mh27dBpMfpU1E_CyU7Uq-bknkT1Ii2Q85yXKX4OHo4JrXcheGPPxxiJw3QCY_G6WKbpEnt_ZPsQnT-DFHOc3qHkH2Sgb3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</creator><creatorcontrib>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</creatorcontrib><description>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/11-bej375</identifier><language>eng</language><publisher>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</publisher><subject>coupling ; Density ; Density estimation ; gradient estimates ; Infinity ; Lévy process ; Markov processes ; Mathematical theorems ; Mathematics ; Property titles ; Semigroups ; Stochastic processes ; symbol ; Symbols</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2012-11, Vol.18 (4), p.1128-1149</ispartof><rights>2012 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2012 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</citedby><cites>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41714084$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41714084$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>SCHILLING, RENÉ L.</creatorcontrib><creatorcontrib>SZTONYK, PAWEŁ</creatorcontrib><creatorcontrib>WANG, JIAN</creatorcontrib><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</description><subject>coupling</subject><subject>Density</subject><subject>Density estimation</subject><subject>gradient estimates</subject><subject>Infinity</subject><subject>Lévy process</subject><subject>Markov processes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Property titles</subject><subject>Semigroups</subject><subject>Stochastic processes</subject><subject>symbol</subject><subject>Symbols</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhL0AiVJYcAAkb1kE7NiOkxWCqPxUkdjQtWXHdkmU1pHtVsqROAcXw1WrrkYafW80bwC4w-iRYIaeMM6U6QlnF2CGCUMZzwt2Ba5D6BHCtCjQDCxrtxuHbruGo3ej8XGCcqvh2kvdmW2EJsRuI6MJ0FnY_P3upwPYmhCSte8kjD8Ghmmj3HADLq0cgrk96Rys3hbf9UfWfL1_1i9N1lJUxowyzBWzmjLGbKGksi2neUWUlBXRVWUQJdSUWlFGLUJWS5tr3lrMpWKKlGQOno-5qUhv2mh27dBpMfpU1E_CyU7Uq-bknkT1Ii2Q85yXKX4OHo4JrXcheGPPxxiJw3QCY_G6WKbpEnt_ZPsQnT-DFHOc3qHkH2Sgb3Y</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>SCHILLING, RENÉ L.</creator><creator>SZTONYK, PAWEŁ</creator><creator>WANG, JIAN</creator><general>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><author>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>coupling</topic><topic>Density</topic><topic>Density estimation</topic><topic>gradient estimates</topic><topic>Infinity</topic><topic>Lévy process</topic><topic>Markov processes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Property titles</topic><topic>Semigroups</topic><topic>Stochastic processes</topic><topic>symbol</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHILLING, RENÉ L.</creatorcontrib><creatorcontrib>SZTONYK, PAWEŁ</creatorcontrib><creatorcontrib>WANG, JIAN</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHILLING, RENÉ L.</au><au>SZTONYK, PAWEŁ</au><au>WANG, JIAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling property and gradient estimates of Lévy processes via the symbol</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>18</volume><issue>4</issue><spage>1128</spage><epage>1149</epage><pages>1128-1149</pages><issn>1350-7265</issn><abstract>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</abstract><pub>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/11-bej375</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2012-11, Vol.18 (4), p.1128-1149 |
issn | 1350-7265 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1352727804 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | coupling Density Density estimation gradient estimates Infinity Lévy process Markov processes Mathematical theorems Mathematics Property titles Semigroups Stochastic processes symbol Symbols |
title | Coupling property and gradient estimates of Lévy processes via the symbol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20property%20and%20gradient%20estimates%20of%20L%C3%A9vy%20processes%20via%20the%20symbol&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=SCHILLING,%20REN%C3%89%20L.&rft.date=2012-11-01&rft.volume=18&rft.issue=4&rft.spage=1128&rft.epage=1149&rft.pages=1128-1149&rft.issn=1350-7265&rft_id=info:doi/10.3150/11-bej375&rft_dat=%3Cjstor_proje%3E41714084%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41714084&rfr_iscdi=true |