Coupling property and gradient estimates of Lévy processes via the symbol

We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2012-11, Vol.18 (4), p.1128-1149
Hauptverfasser: SCHILLING, RENÉ L., SZTONYK, PAWEŁ, WANG, JIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 4
container_start_page 1128
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 18
creator SCHILLING, RENÉ L.
SZTONYK, PAWEŁ
WANG, JIAN
description We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.
doi_str_mv 10.3150/11-bej375
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1352727804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41714084</jstor_id><sourcerecordid>41714084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhL0AiVJYcAAkb1kE7NiOkxWCqPxUkdjQtWXHdkmU1pHtVsqROAcXw1WrrkYafW80bwC4w-iRYIaeMM6U6QlnF2CGCUMZzwt2Ba5D6BHCtCjQDCxrtxuHbruGo3ej8XGCcqvh2kvdmW2EJsRuI6MJ0FnY_P3upwPYmhCSte8kjD8Ghmmj3HADLq0cgrk96Rys3hbf9UfWfL1_1i9N1lJUxowyzBWzmjLGbKGksi2neUWUlBXRVWUQJdSUWlFGLUJWS5tr3lrMpWKKlGQOno-5qUhv2mh27dBpMfpU1E_CyU7Uq-bknkT1Ii2Q85yXKX4OHo4JrXcheGPPxxiJw3QCY_G6WKbpEnt_ZPsQnT-DFHOc3qHkH2Sgb3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</creator><creatorcontrib>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</creatorcontrib><description>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/11-bej375</identifier><language>eng</language><publisher>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</publisher><subject>coupling ; Density ; Density estimation ; gradient estimates ; Infinity ; Lévy process ; Markov processes ; Mathematical theorems ; Mathematics ; Property titles ; Semigroups ; Stochastic processes ; symbol ; Symbols</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2012-11, Vol.18 (4), p.1128-1149</ispartof><rights>2012 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2012 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</citedby><cites>FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41714084$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41714084$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>SCHILLING, RENÉ L.</creatorcontrib><creatorcontrib>SZTONYK, PAWEŁ</creatorcontrib><creatorcontrib>WANG, JIAN</creatorcontrib><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</description><subject>coupling</subject><subject>Density</subject><subject>Density estimation</subject><subject>gradient estimates</subject><subject>Infinity</subject><subject>Lévy process</subject><subject>Markov processes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Property titles</subject><subject>Semigroups</subject><subject>Stochastic processes</subject><subject>symbol</subject><subject>Symbols</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhL0AiVJYcAAkb1kE7NiOkxWCqPxUkdjQtWXHdkmU1pHtVsqROAcXw1WrrkYafW80bwC4w-iRYIaeMM6U6QlnF2CGCUMZzwt2Ba5D6BHCtCjQDCxrtxuHbruGo3ej8XGCcqvh2kvdmW2EJsRuI6MJ0FnY_P3upwPYmhCSte8kjD8Ghmmj3HADLq0cgrk96Rys3hbf9UfWfL1_1i9N1lJUxowyzBWzmjLGbKGksi2neUWUlBXRVWUQJdSUWlFGLUJWS5tr3lrMpWKKlGQOno-5qUhv2mh27dBpMfpU1E_CyU7Uq-bknkT1Ii2Q85yXKX4OHo4JrXcheGPPxxiJw3QCY_G6WKbpEnt_ZPsQnT-DFHOc3qHkH2Sgb3Y</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>SCHILLING, RENÉ L.</creator><creator>SZTONYK, PAWEŁ</creator><creator>WANG, JIAN</creator><general>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Coupling property and gradient estimates of Lévy processes via the symbol</title><author>SCHILLING, RENÉ L. ; SZTONYK, PAWEŁ ; WANG, JIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4517b5fd4555f6babfc74293baa93d99e0434e8db454f00fdaf2d7cf17ab5b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>coupling</topic><topic>Density</topic><topic>Density estimation</topic><topic>gradient estimates</topic><topic>Infinity</topic><topic>Lévy process</topic><topic>Markov processes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Property titles</topic><topic>Semigroups</topic><topic>Stochastic processes</topic><topic>symbol</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHILLING, RENÉ L.</creatorcontrib><creatorcontrib>SZTONYK, PAWEŁ</creatorcontrib><creatorcontrib>WANG, JIAN</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHILLING, RENÉ L.</au><au>SZTONYK, PAWEŁ</au><au>WANG, JIAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling property and gradient estimates of Lévy processes via the symbol</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>18</volume><issue>4</issue><spage>1128</spage><epage>1149</epage><pages>1128-1149</pages><issn>1350-7265</issn><abstract>We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.</abstract><pub>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/11-bej375</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2012-11, Vol.18 (4), p.1128-1149
issn 1350-7265
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1352727804
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects coupling
Density
Density estimation
gradient estimates
Infinity
Lévy process
Markov processes
Mathematical theorems
Mathematics
Property titles
Semigroups
Stochastic processes
symbol
Symbols
title Coupling property and gradient estimates of Lévy processes via the symbol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20property%20and%20gradient%20estimates%20of%20L%C3%A9vy%20processes%20via%20the%20symbol&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=SCHILLING,%20REN%C3%89%20L.&rft.date=2012-11-01&rft.volume=18&rft.issue=4&rft.spage=1128&rft.epage=1149&rft.pages=1128-1149&rft.issn=1350-7265&rft_id=info:doi/10.3150/11-bej375&rft_dat=%3Cjstor_proje%3E41714084%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41714084&rfr_iscdi=true