Coupling property and gradient estimates of Lévy processes via the symbol

We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2012-11, Vol.18 (4), p.1128-1149
Hauptverfasser: SCHILLING, RENÉ L., SZTONYK, PAWEŁ, WANG, JIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to a large class of Levy processes, including stable Levy processes, layered stable processes, tempered stable processes and relativistic stable processes.
ISSN:1350-7265
DOI:10.3150/11-bej375