Sample Path Properties of the Local Time of Multifractional Brownian Motion
We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of t...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2007-08, Vol.13 (3), p.849-867 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 3 |
container_start_page | 849 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 13 |
creator | Boufoussi, Brahim Dozzi, Marco Guerbaz, Raby |
description | We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ . |
doi_str_mv | 10.3150/07-BEJ6140 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1186503490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464908</jstor_id><sourcerecordid>25464908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhnNQsFYv3oVcFaKz2a_kJLVUq6ZYsD0v280u3ZB2y2ar-O9NSCh4GnjmmXfgjaIbBA8YUXgEnjzP3hkicBaNEKaQ8JTRi-iyaSoARBiDUfTxJXeHWsdLGbbx0ruD9sHqJnYmDlsdF07JOl7Zne7I4lgHa7xUwbp9y5-9-9lbuY8XriNX0bmRdaOvhzmO1i-z1XSeFJ-vb9NJkSjM85DkhhpOcF4SAMU1ZRuaozyXChljALM0Q1QjpohWJeWSYI20xIiXabfUJR5HT33uwbtKq6CPqralOHi7k_5XOGnFdF0MdBibSiCUMQqY5NAm3PUJW1n_u5tPCtExAMgzxuk3bt373lXeNY3X5nSAQHRFC-BiKLqVb3u5aoLzJzOlhLV_M_wH9hd7IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</creator><creatorcontrib>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</creatorcontrib><description>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/07-BEJ6140</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Brownian motion ; Chung-type law of iterated logarithm ; Covariance matrices ; Hausdorff dimensions ; local asymptotic self-similarity ; local times ; Logarithms ; Mathematical functions ; Mathematical independent variables ; Mathematics ; multifractional Brownian motion ; Perceptron convergence procedure ; Probability ; Stochastic processes</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-08, Vol.13 (3), p.849-867</ispartof><rights>Copyright 2007 International Statistical Institute/Bernoulli Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2007 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</citedby><cites>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00098675$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boufoussi, Brahim</creatorcontrib><creatorcontrib>Dozzi, Marco</creatorcontrib><creatorcontrib>Guerbaz, Raby</creatorcontrib><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</description><subject>Brownian motion</subject><subject>Chung-type law of iterated logarithm</subject><subject>Covariance matrices</subject><subject>Hausdorff dimensions</subject><subject>local asymptotic self-similarity</subject><subject>local times</subject><subject>Logarithms</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>multifractional Brownian motion</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Stochastic processes</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhnNQsFYv3oVcFaKz2a_kJLVUq6ZYsD0v280u3ZB2y2ar-O9NSCh4GnjmmXfgjaIbBA8YUXgEnjzP3hkicBaNEKaQ8JTRi-iyaSoARBiDUfTxJXeHWsdLGbbx0ruD9sHqJnYmDlsdF07JOl7Zne7I4lgHa7xUwbp9y5-9-9lbuY8XriNX0bmRdaOvhzmO1i-z1XSeFJ-vb9NJkSjM85DkhhpOcF4SAMU1ZRuaozyXChljALM0Q1QjpohWJeWSYI20xIiXabfUJR5HT33uwbtKq6CPqralOHi7k_5XOGnFdF0MdBibSiCUMQqY5NAm3PUJW1n_u5tPCtExAMgzxuk3bt373lXeNY3X5nSAQHRFC-BiKLqVb3u5aoLzJzOlhLV_M_wH9hd7IQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Boufoussi, Brahim</creator><creator>Dozzi, Marco</creator><creator>Guerbaz, Raby</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070801</creationdate><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><author>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Brownian motion</topic><topic>Chung-type law of iterated logarithm</topic><topic>Covariance matrices</topic><topic>Hausdorff dimensions</topic><topic>local asymptotic self-similarity</topic><topic>local times</topic><topic>Logarithms</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>multifractional Brownian motion</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boufoussi, Brahim</creatorcontrib><creatorcontrib>Dozzi, Marco</creatorcontrib><creatorcontrib>Guerbaz, Raby</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boufoussi, Brahim</au><au>Dozzi, Marco</au><au>Guerbaz, Raby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Path Properties of the Local Time of Multifractional Brownian Motion</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>13</volume><issue>3</issue><spage>849</spage><epage>867</epage><pages>849-867</pages><issn>1350-7265</issn><abstract>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/07-BEJ6140</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-08, Vol.13 (3), p.849-867 |
issn | 1350-7265 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1186503490 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | Brownian motion Chung-type law of iterated logarithm Covariance matrices Hausdorff dimensions local asymptotic self-similarity local times Logarithms Mathematical functions Mathematical independent variables Mathematics multifractional Brownian motion Perceptron convergence procedure Probability Stochastic processes |
title | Sample Path Properties of the Local Time of Multifractional Brownian Motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Path%20Properties%20of%20the%20Local%20Time%20of%20Multifractional%20Brownian%20Motion&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Boufoussi,%20Brahim&rft.date=2007-08-01&rft.volume=13&rft.issue=3&rft.spage=849&rft.epage=867&rft.pages=849-867&rft.issn=1350-7265&rft_id=info:doi/10.3150/07-BEJ6140&rft_dat=%3Cjstor_proje%3E25464908%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25464908&rfr_iscdi=true |