Sample Path Properties of the Local Time of Multifractional Brownian Motion

We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2007-08, Vol.13 (3), p.849-867
Hauptverfasser: Boufoussi, Brahim, Dozzi, Marco, Guerbaz, Raby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue 3
container_start_page 849
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 13
creator Boufoussi, Brahim
Dozzi, Marco
Guerbaz, Raby
description We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .
doi_str_mv 10.3150/07-BEJ6140
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1186503490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464908</jstor_id><sourcerecordid>25464908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhnNQsFYv3oVcFaKz2a_kJLVUq6ZYsD0v280u3ZB2y2ar-O9NSCh4GnjmmXfgjaIbBA8YUXgEnjzP3hkicBaNEKaQ8JTRi-iyaSoARBiDUfTxJXeHWsdLGbbx0ruD9sHqJnYmDlsdF07JOl7Zne7I4lgHa7xUwbp9y5-9-9lbuY8XriNX0bmRdaOvhzmO1i-z1XSeFJ-vb9NJkSjM85DkhhpOcF4SAMU1ZRuaozyXChljALM0Q1QjpohWJeWSYI20xIiXabfUJR5HT33uwbtKq6CPqralOHi7k_5XOGnFdF0MdBibSiCUMQqY5NAm3PUJW1n_u5tPCtExAMgzxuk3bt373lXeNY3X5nSAQHRFC-BiKLqVb3u5aoLzJzOlhLV_M_wH9hd7IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</creator><creatorcontrib>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</creatorcontrib><description>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/07-BEJ6140</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Brownian motion ; Chung-type law of iterated logarithm ; Covariance matrices ; Hausdorff dimensions ; local asymptotic self-similarity ; local times ; Logarithms ; Mathematical functions ; Mathematical independent variables ; Mathematics ; multifractional Brownian motion ; Perceptron convergence procedure ; Probability ; Stochastic processes</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-08, Vol.13 (3), p.849-867</ispartof><rights>Copyright 2007 International Statistical Institute/Bernoulli Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2007 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</citedby><cites>FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00098675$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boufoussi, Brahim</creatorcontrib><creatorcontrib>Dozzi, Marco</creatorcontrib><creatorcontrib>Guerbaz, Raby</creatorcontrib><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</description><subject>Brownian motion</subject><subject>Chung-type law of iterated logarithm</subject><subject>Covariance matrices</subject><subject>Hausdorff dimensions</subject><subject>local asymptotic self-similarity</subject><subject>local times</subject><subject>Logarithms</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>multifractional Brownian motion</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Stochastic processes</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhnNQsFYv3oVcFaKz2a_kJLVUq6ZYsD0v280u3ZB2y2ar-O9NSCh4GnjmmXfgjaIbBA8YUXgEnjzP3hkicBaNEKaQ8JTRi-iyaSoARBiDUfTxJXeHWsdLGbbx0ruD9sHqJnYmDlsdF07JOl7Zne7I4lgHa7xUwbp9y5-9-9lbuY8XriNX0bmRdaOvhzmO1i-z1XSeFJ-vb9NJkSjM85DkhhpOcF4SAMU1ZRuaozyXChljALM0Q1QjpohWJeWSYI20xIiXabfUJR5HT33uwbtKq6CPqralOHi7k_5XOGnFdF0MdBibSiCUMQqY5NAm3PUJW1n_u5tPCtExAMgzxuk3bt373lXeNY3X5nSAQHRFC-BiKLqVb3u5aoLzJzOlhLV_M_wH9hd7IQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Boufoussi, Brahim</creator><creator>Dozzi, Marco</creator><creator>Guerbaz, Raby</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070801</creationdate><title>Sample Path Properties of the Local Time of Multifractional Brownian Motion</title><author>Boufoussi, Brahim ; Dozzi, Marco ; Guerbaz, Raby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9f5f7439d400c7e56b59199ac1fff0362815e16c4ecd57a43e1ea317d20362ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Brownian motion</topic><topic>Chung-type law of iterated logarithm</topic><topic>Covariance matrices</topic><topic>Hausdorff dimensions</topic><topic>local asymptotic self-similarity</topic><topic>local times</topic><topic>Logarithms</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>multifractional Brownian motion</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boufoussi, Brahim</creatorcontrib><creatorcontrib>Dozzi, Marco</creatorcontrib><creatorcontrib>Guerbaz, Raby</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boufoussi, Brahim</au><au>Dozzi, Marco</au><au>Guerbaz, Raby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Path Properties of the Local Time of Multifractional Brownian Motion</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>13</volume><issue>3</issue><spage>849</spage><epage>867</epage><pages>849-867</pages><issn>1350-7265</issn><abstract>We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/07-BEJ6140</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-08, Vol.13 (3), p.849-867
issn 1350-7265
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1186503490
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Brownian motion
Chung-type law of iterated logarithm
Covariance matrices
Hausdorff dimensions
local asymptotic self-similarity
local times
Logarithms
Mathematical functions
Mathematical independent variables
Mathematics
multifractional Brownian motion
Perceptron convergence procedure
Probability
Stochastic processes
title Sample Path Properties of the Local Time of Multifractional Brownian Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Path%20Properties%20of%20the%20Local%20Time%20of%20Multifractional%20Brownian%20Motion&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Boufoussi,%20Brahim&rft.date=2007-08-01&rft.volume=13&rft.issue=3&rft.spage=849&rft.epage=867&rft.pages=849-867&rft.issn=1350-7265&rft_id=info:doi/10.3150/07-BEJ6140&rft_dat=%3Cjstor_proje%3E25464908%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25464908&rfr_iscdi=true