Sample Path Properties of the Local Time of Multifractional Brownian Motion
We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of t...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2007-08, Vol.13 (3), p.849-867 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ . |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.3150/07-BEJ6140 |