Sample Path Properties of the Local Time of Multifractional Brownian Motion

We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2007-08, Vol.13 (3), p.849-867
Hauptverfasser: Boufoussi, Brahim, Dozzi, Marco, Guerbaz, Raby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, $B^{H}=(B^{H(t)}(t),t\in {\Bbb R}^{+})$ . An analogue of Chung's law of the iterated logarithm is studied for $B^{H}$ and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self-similarity is proved to be satisfied by the local time of $B^{H}$ .
ISSN:1350-7265
DOI:10.3150/07-BEJ6140