Between Strassen and Chung Normalizations for Lévy's Area Process
Let {L(t): t ≥ 0} be Lévy's area process, let$\gamma \colon {\bf R}_{+}\mapsto {\bf R}$, and let {Zt: t≥ 3} be the stochastic process defined by Zt(s)=L(ts)/(2t log log t), 0 ≤ s ≤ 1. Conditions on γ are given such that the set of all limit points of {γ (t)Zt: t≥ 3} as t → ∞ is a.s. equal to th...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 1998-03, Vol.4 (1), p.115-125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {L(t): t ≥ 0} be Lévy's area process, let$\gamma \colon {\bf R}_{+}\mapsto {\bf R}$, and let {Zt: t≥ 3} be the stochastic process defined by Zt(s)=L(ts)/(2t log log t), 0 ≤ s ≤ 1. Conditions on γ are given such that the set of all limit points of {γ (t)Zt: t≥ 3} as t → ∞ is a.s. equal to the set of all continuous functions defined on [0, 1] which vanish at 0. |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.2307/3318534 |