Convergence Rates of Posterior Distributions for Brownian Semimartingale Models
We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2006-10, Vol.12 (5), p.863-888 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 888 |
---|---|
container_issue | 5 |
container_start_page | 863 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 12 |
creator | Van Der Meulen, F. H. Van Der Vaart, A. W. Van Zanten, J. H. |
description | We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well. |
doi_str_mv | 10.3150/bj/1161614950 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1161614950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464841</jstor_id><sourcerecordid>25464841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxHNQsFaPHoV8gbXJ5t_uSXS1KlQqas9Lsnlbsmw3JUkVv70tLfUg7zAwzPx4DEJXlNwwKsjEdBNK5fZ4KcgJGlEmSKZyKc7QeYwdIZRLSUZoXvnhC8IShgbwu04QsW_xm48JgvMBP7iYgjOb5PwQcbt17oP_Hpwe8Aes3EqH5Ial7gG_egt9vECnre4jXB50jBbTx8_qOZvNn16qu1nWMMFTZlmuCUjFmNEtZ6WwqlCWtYqCsVyZ0nImAAhRuShloYAKzbRQRspSNIVhY3S7566D76BJsGl6Z-t12L30U3vt6moxO7gHMV39t8mWkO0JTfAxBmiPZUrq3Yb_8tf7fBeTD8dwLrjkBafsF2WkcWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</creator><creatorcontrib>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</creatorcontrib><description>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/bj/1161614950</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Average linear density ; Bayesian estimation ; continuous semimartingale ; Determinism ; Dirichlet process ; Entropy ; Ergodic theory ; Hellinger distance ; infinite-dimensional model ; Martingales ; Mathematical functions ; Mathematical independent variables ; Musical intervals ; Parametric models ; rate of convergence ; wavelets ; White noise</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2006-10, Vol.12 (5), p.863-888</ispartof><rights>Copyright 2006 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2006 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</citedby><cites>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464841$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464841$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,829,882,922,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Van Der Meulen, F. H.</creatorcontrib><creatorcontrib>Van Der Vaart, A. W.</creatorcontrib><creatorcontrib>Van Zanten, J. H.</creatorcontrib><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</description><subject>Average linear density</subject><subject>Bayesian estimation</subject><subject>continuous semimartingale</subject><subject>Determinism</subject><subject>Dirichlet process</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Hellinger distance</subject><subject>infinite-dimensional model</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Musical intervals</subject><subject>Parametric models</subject><subject>rate of convergence</subject><subject>wavelets</subject><subject>White noise</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxHNQsFaPHoV8gbXJ5t_uSXS1KlQqas9Lsnlbsmw3JUkVv70tLfUg7zAwzPx4DEJXlNwwKsjEdBNK5fZ4KcgJGlEmSKZyKc7QeYwdIZRLSUZoXvnhC8IShgbwu04QsW_xm48JgvMBP7iYgjOb5PwQcbt17oP_Hpwe8Aes3EqH5Ial7gG_egt9vECnre4jXB50jBbTx8_qOZvNn16qu1nWMMFTZlmuCUjFmNEtZ6WwqlCWtYqCsVyZ0nImAAhRuShloYAKzbRQRspSNIVhY3S7566D76BJsGl6Z-t12L30U3vt6moxO7gHMV39t8mWkO0JTfAxBmiPZUrq3Yb_8tf7fBeTD8dwLrjkBafsF2WkcWo</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Van Der Meulen, F. H.</creator><creator>Van Der Vaart, A. W.</creator><creator>Van Zanten, J. H.</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><author>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Average linear density</topic><topic>Bayesian estimation</topic><topic>continuous semimartingale</topic><topic>Determinism</topic><topic>Dirichlet process</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Hellinger distance</topic><topic>infinite-dimensional model</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Musical intervals</topic><topic>Parametric models</topic><topic>rate of convergence</topic><topic>wavelets</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Meulen, F. H.</creatorcontrib><creatorcontrib>Van Der Vaart, A. W.</creatorcontrib><creatorcontrib>Van Zanten, J. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Meulen, F. H.</au><au>Van Der Vaart, A. W.</au><au>Van Zanten, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>12</volume><issue>5</issue><spage>863</spage><epage>888</epage><pages>863-888</pages><issn>1350-7265</issn><abstract>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/bj/1161614950</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2006-10, Vol.12 (5), p.863-888 |
issn | 1350-7265 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1161614950 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
subjects | Average linear density Bayesian estimation continuous semimartingale Determinism Dirichlet process Entropy Ergodic theory Hellinger distance infinite-dimensional model Martingales Mathematical functions Mathematical independent variables Musical intervals Parametric models rate of convergence wavelets White noise |
title | Convergence Rates of Posterior Distributions for Brownian Semimartingale Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Rates%20of%20Posterior%20Distributions%20for%20Brownian%20Semimartingale%20Models&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Van%20Der%20Meulen,%20F.%20H.&rft.date=2006-10-01&rft.volume=12&rft.issue=5&rft.spage=863&rft.epage=888&rft.pages=863-888&rft.issn=1350-7265&rft_id=info:doi/10.3150/bj/1161614950&rft_dat=%3Cjstor_proje%3E25464841%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25464841&rfr_iscdi=true |