Convergence Rates of Posterior Distributions for Brownian Semimartingale Models

We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2006-10, Vol.12 (5), p.863-888
Hauptverfasser: Van Der Meulen, F. H., Van Der Vaart, A. W., Van Zanten, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 5
container_start_page 863
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 12
creator Van Der Meulen, F. H.
Van Der Vaart, A. W.
Van Zanten, J. H.
description We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.
doi_str_mv 10.3150/bj/1161614950
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1161614950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464841</jstor_id><sourcerecordid>25464841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxHNQsFaPHoV8gbXJ5t_uSXS1KlQqas9Lsnlbsmw3JUkVv70tLfUg7zAwzPx4DEJXlNwwKsjEdBNK5fZ4KcgJGlEmSKZyKc7QeYwdIZRLSUZoXvnhC8IShgbwu04QsW_xm48JgvMBP7iYgjOb5PwQcbt17oP_Hpwe8Aes3EqH5Ial7gG_egt9vECnre4jXB50jBbTx8_qOZvNn16qu1nWMMFTZlmuCUjFmNEtZ6WwqlCWtYqCsVyZ0nImAAhRuShloYAKzbRQRspSNIVhY3S7566D76BJsGl6Z-t12L30U3vt6moxO7gHMV39t8mWkO0JTfAxBmiPZUrq3Yb_8tf7fBeTD8dwLrjkBafsF2WkcWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</creator><creatorcontrib>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</creatorcontrib><description>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/bj/1161614950</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Average linear density ; Bayesian estimation ; continuous semimartingale ; Determinism ; Dirichlet process ; Entropy ; Ergodic theory ; Hellinger distance ; infinite-dimensional model ; Martingales ; Mathematical functions ; Mathematical independent variables ; Musical intervals ; Parametric models ; rate of convergence ; wavelets ; White noise</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2006-10, Vol.12 (5), p.863-888</ispartof><rights>Copyright 2006 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2006 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</citedby><cites>FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464841$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464841$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,829,882,922,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Van Der Meulen, F. H.</creatorcontrib><creatorcontrib>Van Der Vaart, A. W.</creatorcontrib><creatorcontrib>Van Zanten, J. H.</creatorcontrib><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</description><subject>Average linear density</subject><subject>Bayesian estimation</subject><subject>continuous semimartingale</subject><subject>Determinism</subject><subject>Dirichlet process</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Hellinger distance</subject><subject>infinite-dimensional model</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Musical intervals</subject><subject>Parametric models</subject><subject>rate of convergence</subject><subject>wavelets</subject><subject>White noise</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxHNQsFaPHoV8gbXJ5t_uSXS1KlQqas9Lsnlbsmw3JUkVv70tLfUg7zAwzPx4DEJXlNwwKsjEdBNK5fZ4KcgJGlEmSKZyKc7QeYwdIZRLSUZoXvnhC8IShgbwu04QsW_xm48JgvMBP7iYgjOb5PwQcbt17oP_Hpwe8Aes3EqH5Ial7gG_egt9vECnre4jXB50jBbTx8_qOZvNn16qu1nWMMFTZlmuCUjFmNEtZ6WwqlCWtYqCsVyZ0nImAAhRuShloYAKzbRQRspSNIVhY3S7566D76BJsGl6Z-t12L30U3vt6moxO7gHMV39t8mWkO0JTfAxBmiPZUrq3Yb_8tf7fBeTD8dwLrjkBafsF2WkcWo</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Van Der Meulen, F. H.</creator><creator>Van Der Vaart, A. W.</creator><creator>Van Zanten, J. H.</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</title><author>Van Der Meulen, F. H. ; Van Der Vaart, A. W. ; Van Zanten, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d32a0e6733baf4395d787d3f71ebd47b9d435ee007259687e15a3a57b6695c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Average linear density</topic><topic>Bayesian estimation</topic><topic>continuous semimartingale</topic><topic>Determinism</topic><topic>Dirichlet process</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Hellinger distance</topic><topic>infinite-dimensional model</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Musical intervals</topic><topic>Parametric models</topic><topic>rate of convergence</topic><topic>wavelets</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Meulen, F. H.</creatorcontrib><creatorcontrib>Van Der Vaart, A. W.</creatorcontrib><creatorcontrib>Van Zanten, J. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Meulen, F. H.</au><au>Van Der Vaart, A. W.</au><au>Van Zanten, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Rates of Posterior Distributions for Brownian Semimartingale Models</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>12</volume><issue>5</issue><spage>863</spage><epage>888</epage><pages>863-888</pages><issn>1350-7265</issn><abstract>We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/bj/1161614950</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2006-10, Vol.12 (5), p.863-888
issn 1350-7265
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1161614950
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects Average linear density
Bayesian estimation
continuous semimartingale
Determinism
Dirichlet process
Entropy
Ergodic theory
Hellinger distance
infinite-dimensional model
Martingales
Mathematical functions
Mathematical independent variables
Musical intervals
Parametric models
rate of convergence
wavelets
White noise
title Convergence Rates of Posterior Distributions for Brownian Semimartingale Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Rates%20of%20Posterior%20Distributions%20for%20Brownian%20Semimartingale%20Models&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Van%20Der%20Meulen,%20F.%20H.&rft.date=2006-10-01&rft.volume=12&rft.issue=5&rft.spage=863&rft.epage=888&rft.pages=863-888&rft.issn=1350-7265&rft_id=info:doi/10.3150/bj/1161614950&rft_dat=%3Cjstor_proje%3E25464841%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25464841&rfr_iscdi=true