Convergence Rates of Posterior Distributions for Brownian Semimartingale Models

We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2006-10, Vol.12 (5), p.863-888
Hauptverfasser: Van Der Meulen, F. H., Van Der Vaart, A. W., Van Zanten, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well.
ISSN:1350-7265
DOI:10.3150/bj/1161614950