On Adaptive Inverse Estimation of Linear Functionals in Hilbert Scales

We address the problem of estimating the value of a linear functional 〈f, x〉 from random noisy observations of y = Ax in Hilbert scales. Both the white noise and density observation models are considered. We propose an estimation procedure that adapts to unknown smoothness of x, of f, and of the noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2003-10, Vol.9 (5), p.783-807
Hauptverfasser: Goldenshluger, Alexander, Pereverzev, Sergei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of estimating the value of a linear functional 〈f, x〉 from random noisy observations of y = Ax in Hilbert scales. Both the white noise and density observation models are considered. We propose an estimation procedure that adapts to unknown smoothness of x, of f, and of the noise covariance operator. It is shown that accuracy of this adaptive estimator is worse only by a logarithmic factor than one could achieve in the case of known smoothness. As an illustrative example, the problem of deconvolving a bivariate density with singular support is considered.
ISSN:1350-7265
DOI:10.3150/bj/1066418878