Directed Polymers in a Random Environment: Path Localization and Strong Disorder

We consider directed polymers in a random environment. Under some mild assumptions on the environment, we prove equivalence between the decay rate of the partition function and some natural localization properties of the path; some quantitative estimates of the decay of the partition function in one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2003-08, Vol.9 (4), p.705-723
Hauptverfasser: Comets, Francis, Shiga, Tokuzo, Yoshida, Nobuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider directed polymers in a random environment. Under some mild assumptions on the environment, we prove equivalence between the decay rate of the partition function and some natural localization properties of the path; some quantitative estimates of the decay of the partition function in one or two dimensions, or at sufficiently low temperature; and the existence of quenched free energy. In particular, we generalize to general environments the results recently obtained by Carmona and Hu for a Gaussian environment. Our approach is based on martingale decomposition and martingale analysis. It leads to a natural, asymptotic relation between the partition function, and the probability that two polymers in the same environment, but otherwise independent, end up at the same point.
ISSN:1350-7265
DOI:10.3150/bj/1066223275